The Distribution of Logarithmic Derivatives of Quadratic L-functions in Positive Characteristic

Félix Baril Boudreau (University of Lethbridge)

29-Feb-2024, 20:45-21:45 (22 months ago)

Abstract: To each square-free monic polynomial $D$ in a fixed polynomial ring $\mathbb{F}_q[t]$, we can associate a real quadratic character $\chi_D$, and then a Dirichlet $L$-function $L(s,\chi_D)$. We compute the limiting distribution of the family of values $L'(1,\chi_D)/L(1,\chi_D)$ as $D$ runs through the square-free monic polynomials of $\mathbb{F}_q[t]$ and establish that this distribution has a smooth density function. Time permitting, we discuss connections of this result with Euler-Kronecker constants and ideal class groups of quadratic extensions. This is joint work with Amir Akbary.

combinatoricsnumber theory

Audience: researchers in the topic


Lethbridge number theory and combinatorics seminar

Organizer: Félix Baril Boudreau*
Curator: Ertan Elma
*contact for this listing

Export talk to