Learning with energy-based models
Thomas Pock (University of Graz)
Abstract: In this talk, I will show how to use learning techniques to significantly improve energy-based models. I will start by showing that even for the simplest models such as total variation, one can greatly improve the accuracy of the numerical approximation by learning the "best" discretization within a class of consistent discretizations. Then I will move forward to more expressive models and show how they can be learned in order to give state-of-the art performance for image reconstruction problems, such as denoising, superresolution, MRI and CT. Finally, I will show how energy based models for image labeling such as Markov random fields can be used in the framework of deep learning.
machine learningnumerical analysisoptimization and control
Audience: researchers in the topic
Series comments: Please fill out the following form for registering for our email list, where talk announcements and zoom details are distributed: docs.google.com/forms/d/e/1FAIpQLSeWAzBXsXRqpJhHDKODywySl_BWZN-Cbrik_4bEun2fGwhOKg/viewform?usp=sf_link
Slides: drive.google.com/drive/folders/1w9lNCGWZyzGFxxuVvhJOcjlc92X2toJg?usp=sharing
Videos: www.fau.tv/course/id/878
| Organizers: | Leon Bungert*, Daniel Tenbrinck |
| Curator: | Martin Burger |
| *contact for this listing |
