Machine learning for Fluid Mechanics

Steve Brunton (University of Washington)

31-Mar-2021, 17:00-18:00 (3 years ago)

Abstract: Many tasks in fluid mechanics, such as design optimization and control, are challenging because fluids are nonlinear and exhibit a large range of scales in both space and time. This range of scales necessitates exceedingly high-dimensional measurements and computational discretization to resolve all relevant features, resulting in vast data sets and time-intensive computations. Indeed, fluid dynamics is one of the original big data fields, and many high-performance computing architectures, experimental measurement techniques, and advanced data processing and visualization algorithms were driven by decades of research in fluid mechanics. Machine learning constitutes a growing set of powerful techniques to extract patterns and build models from this data, complementing the existing theoretical, numerical, and experimental efforts in fluid mechanics. In this talk, we will explore current goals and opportunities for machine learning in fluid mechanics, and we will highlight a number of recent technical advances. Because fluid dynamics is central to transportation, health, and defense systems, we will emphasize the importance of machine learning solutions that are interpretable, explainable, generalizable, and that respect known physics.

data structures and algorithmsmachine learningmathematical physicsinformation theoryoptimization and controldata analysis, statistics and probability

Audience: researchers in the topic

( video )


Mathematics, Physics and Machine Learning (IST, Lisbon)

Series comments: To receive the series announcements, please register in:
mpml.tecnico.ulisboa.pt
mpml.tecnico.ulisboa.pt/registration
Zoom link: videoconf-colibri.zoom.us/j/91599759679

Organizers: Mário Figueiredo, Tiago Domingos, Francisco Melo, Jose Mourao*, Cláudia Nunes, Yasser Omar, Pedro Alexandre Santos, João Seixas, Cláudia Soares, João Xavier
*contact for this listing

Export talk to