Brill--Noether theory over the Hurwitz space
Hannah Larson (Stanford University)
Abstract: Let $C$ be a curve of genus $g$. A fundamental problem in the theory of algebraic curves is to understand maps of $C$ to projective space of dimension r of degree d. When the curve $C$ is general, the moduli space of such maps is well-understood by the main theorems of Brill-Noether theory. However, in nature, curves $C$ are often encountered already equipped with a map to some projective space, which may force them to be special in moduli. The simplest case is when $C$ is general among curves of fixed gonality. Despite much study over the past three decades, a similarly complete picture has proved elusive in this case. In this talk, I will discuss recent joint work with Eric Larson and Isabel Vogt that completes such a picture, by proving analogs of all of the main theorems of Brill--Noether theory in this setting.
algebraic geometrynumber theory
Audience: researchers in the topic
Comments: There is a pre-talk by Eric Larson on limit linear series.
MAGIC (Michigan - Arithmetic Geometry Initiative - Columbia)
Series comments: Description: Research seminar in arithmetic geometry
(Zoom password = order of the alternating group on six letters)
| Organizers: | Will Sawin*, Wei Ho |
| *contact for this listing |
