Lagrangian configurations and Hamiltonian maps

Egor Shelukhin (Montreal)

10-May-2021, 01:00-02:00 (5 years ago)

Abstract: We study configurations of disjoint Lagrangian submanifolds in certain low-dimensional symplectic manifolds from the perspective of the geometry of Hamiltonian maps. We detect infinite-dimensional flats in the Hamiltonian group of the two-sphere equipped with Hofer's metric, showing in particular that this group is not quasi-isometric to a line. This answers a well-known question of Kapovich-Polterovich from 2006. We show that these flats in Ham(S^2) stabilize to certain product four-manifolds, prove constraints on Lagrangian packing, find new instances of Lagrangian Poincare recurrence, and present a new hierarchy of normal subgroups of area-preserving homeomorphisms of the two-sphere. The technology involves Lagrangian spectral invariants in symmetric product orbifolds. This is joint work with Leonid Polterovich.

mathematical physicsalgebraic geometrysymplectic geometry

Audience: researchers in the topic


IBS-CGP weekly zoom seminar

Series comments: Registration is required at cgp.ibs.re.kr/activities/talkregistration

Organizer: Yunhyung Cho*
*contact for this listing

Export talk to