On the spectral theory and analytic K-homology of complex spaces
Francesco Bei (Università di Roma La Sapienza)
Abstract: Let be a compact and irreducible Hermitian complex space. In the last thirty years, motivated among other things by the Cheeger-Goresky-MacPherson conjecture and the Riemann-Roch theorem of Baum-Fulton-MacPherson, the - theory of the Hodge-de Rham operator , the Hodge-Dolbeault operator and the associated Laplacians on has been the subject of many investigations. In the first part of this talk we will report about some recent results concerning the existence of self-adjoint extensions of the Hodge- Kodaira Laplacian with entirely discrete spectrum. Then in the second part we will describe some applications to the K-homology of X. In particular assuming we will show how the operator induces an analytic K-homology class in and we will give a geometric interpretation of this class in terms of a resolution of .
Mathematics
Audience: researchers in the topic
Geometry Seminar - University of Florence
Series comments: If you are interested in attending, please send a message to daniele.angella@unifi.it or francesco.pediconi@unifi.it.
Organizers: | Giorgio Ottaviani*, Daniele Angella*, Francesco Pediconi, Valerio Melani |
*contact for this listing |