Stability and rigidity of normal homogeneous Einstein manifolds
Paul Schwahn
Abstract: The stability of an Einstein metric is decided by the (non-)existence of small eigenvalues of the Lichnerowicz Laplacian on tt-tensors. In the homogeneous setting, harmonic analysis allows us to approach the computation of these eigenvalues. This easy on symmetric spaces, but considerably more difficult in the non-symmetric case. I review the case of irreducible symmetric spaces of compact type, prove the existence of a non-symmetric stable Einstein metric of positive scalar curvature, and give an outlook on how to investigate the normal homogeneous case. Furthermore, I explore the rigidity and infinitesimal deformability of homogeneous Einstein metrics.
Mathematics
Audience: researchers in the topic
Geometry Seminar - University of Florence
Series comments: If you are interested in attending, please send a message to daniele.angella@unifi.it or francesco.pediconi@unifi.it.
Organizers: | Giorgio Ottaviani*, Daniele Angella*, Francesco Pediconi, Valerio Melani |
*contact for this listing |