Torus knot choreographies in the n-body problem

Renato Calleja (UNAM, Mexico)

11-Aug-2020, 14:00-15:00 (4 years ago)

Abstract: n-body choreographies are periodic solutions to the n-body equations in which equal masses chase each other around a fixed closed curve. In this talk I will present a systematic approach for proving the existence of spatial choreographies in the gravitational body problem with the help of the digital computer. These arise from the polygonal system of bodies in a rotating frame of reference. In rotating coordinates, after exploiting the symmetries, the equation of a choreographic configuration is reduced to a delay differential equation (DDE) describing the position and velocity of a single body. We prove that a dense set of Lyapunov orbits, with frequencies satisfying a Diophantine equation, correspond to choreographies.

analysis of PDEsclassical analysis and ODEsdynamical systemsfunctional analysisnumerical analysis

Audience: researchers in the discipline


CRM CAMP (Computer-Assisted Mathematical Proofs) in Nonlinear Analysis

Series comments: To have access to the zoom details of the talks, please register at www.crm.math.ca/camp-nonlinear

Organizers: Jean-Philippe Lessard*, Jason D. Mireles James, Jan Bouwe van den Berg
*contact for this listing

Export talk to