Rigorous numerical investigation of chaos and stability of periodic orbits in the Kuramoto-Sivashinsky PDE

Daniel Wilczak (Jagiellonian University)

04-Aug-2020, 14:00-15:00 (4 years ago)

Abstract: We give a computer-assisted proof of the existence of symbolic dynamics for a certain Poincaré map in the one-dimensional Kuramoto-Sivashinsky PDE. In particular, we show the existence of infinitely many (countably) periodic orbits (POs) of arbitrary large principal periods. We provide also a study of the stability type of some POs. The proof utilizes pure topological results (variant of the method of covering relations on compact absolute neighbourhood retracts) with rigorous integration of the PDE and the associated variational equation. This talk is based on the recent results [1,2].

[1] D. Wilczak and P. Zgliczyński. A geometric method for infinite-dimensional chaos: symbolic dynamics for the Kuramoto-Sivashinsky PDE on the line, Journal of Differential Equations, Vol. 269 No. 10 (2020), 8509-8548.

[2] D. Wilczak and P. Zgliczyński. A rigorous C1-algorithm for integration of dissipative PDEs based on automatic differentiation and the Taylor method, in preparation.

analysis of PDEsclassical analysis and ODEsdynamical systemsfunctional analysisnumerical analysis

Audience: researchers in the discipline


CRM CAMP (Computer-Assisted Mathematical Proofs) in Nonlinear Analysis

Series comments: To have access to the zoom details of the talks, please register at www.crm.math.ca/camp-nonlinear

Organizers: Jean-Philippe Lessard*, Jason D. Mireles James, Jan Bouwe van den Berg
*contact for this listing

Export talk to