Computing and validating collisions, ejections, and homoclinics for the three body problem

Shane Kepley (Rutgers University, USA)

22-Sep-2020, 14:00-15:00 (4 years ago)

Abstract: Understanding connecting and collision/ejection orbits is central to the study of transport in Celestial Mechanics. The atlas algorithm combines the parameterization method with rigorous numerical techniques for solving initial value problems in order to find and validate connecting orbits. However, difficulties arise when parameterizing orbits passing near a singularity such as “near miss” homoclinics or ejection/collision orbits. In this talk we present a method of overcoming this obstacle based on rigorous Levi-Civita regularization which desingularizes the vector field near the primaries. This regularization is performed dynamically allowing invariant manifolds to be parameterized globally, even near singularities.

analysis of PDEsclassical analysis and ODEsdynamical systemsfunctional analysisnumerical analysis

Audience: researchers in the discipline


CRM CAMP (Computer-Assisted Mathematical Proofs) in Nonlinear Analysis

Series comments: To have access to the zoom details of the talks, please register at www.crm.math.ca/camp-nonlinear

Organizers: Jean-Philippe Lessard*, Jason D. Mireles James, Jan Bouwe van den Berg
*contact for this listing

Export talk to