Minimal Euler Characteristics for Even-Dimensional Manifolds with Finite Fundamental Group
Alejandro Adem (University of British Columbia)
Abstract: In this talk we will discuss estimates for the minimal Euler characteristic of even dimensional manifolds with a given finite fundamental group and a highly connected universal cover. In particular we strengthen the Hausmann-Weinberger invariants and extend them to higher dimensions. As an application we obtain new restrictions for non-abelian finite groups arising as fundamental groups of rational homology 4–spheres. This is joint work with Ian Hambleton.
algebraic geometryanalysis of PDEsalgebraic topologycomplex variablesdifferential geometrygeneral topologygeometric topologyK-theory and homologymetric geometrysymplectic geometry
Audience: researchers in the topic
Comments: Note that we have 2 talks this week, one at 10 am (E. Cliff), another one at 11 am (A. Adem).
CRM - Séminaire du CIRGET / Géométrie et Topologie
Series comments: Hybrid seminar of geometry and topology. Laboratory : CIRGET - www.cirget.uqam.ca The homepage of the seminar is www.cirget.uqam.ca/fr/seminaires.html
[[Please provide your first and last name so that the speaker can identify you. Kindly submit your questions or comments using the chat box, not via audio.]]
The livestream is on Zoom at uqam.zoom.us/j/88383789249 It is recommended to subscribe to the CIRGET newsletter. Please send an email to haedrich.alexandra@uqam.ca , providing your name and affiliation.
Some talks can be seen at www.youtube.com/channel/UCLkFm-uEvXSf9y-iQtWOLWA
| Organizers: | Julien Keller*, Duncan McCoy |
| *contact for this listing |
