A non-Archimedean characterization of local K-stability

Yueqiao Wu (Michigan Univ)

20-Jan-2023, 16:00-17:15 (3 years ago)

Abstract: Log Fano cone singularities are generalizations of cones over Fano varieties, and have a local K-stability theory extending the one for Fano varieties. In this talk, we aim to give a characterization for local K-stability from a non-Archimedean point of view. As a consequence of this characterization, we can show that a log Fano cone singularity is K-polystable with respect to a larger class of test configurations if it admits a Ricci-flat Kähler cone metric, strengthening earlier results of Collins-Székelyhidi and Li.

algebraic geometryanalysis of PDEsalgebraic topologycomplex variablesdifferential geometrygeneral topologygeometric topologyK-theory and homologymetric geometrysymplectic geometry

Audience: researchers in the topic


CRM - Séminaire du CIRGET / Géométrie et Topologie

Series comments: Hybrid seminar of geometry and topology. Laboratory : CIRGET - www.cirget.uqam.ca The homepage of the seminar is www.cirget.uqam.ca/fr/seminaires.html

[[Please provide your first and last name so that the speaker can identify you. Kindly submit your questions or comments using the chat box, not via audio.]]

The livestream is on Zoom at uqam.zoom.us/j/88383789249 It is recommended to subscribe to the CIRGET newsletter. Please send an email to haedrich.alexandra@uqam.ca , providing your name and affiliation.

Some talks can be seen at www.youtube.com/channel/UCLkFm-uEvXSf9y-iQtWOLWA

Organizers: Julien Keller*, Duncan McCoy
*contact for this listing

Export talk to