Mixed invariants in Khovanov homology for unorientable cobordisms
Sucharit Sarkar (UCLA)
Abstract: ** Note : the event will take place at 11.30 am and not 11 am as usual. ** Attention : l'horaire est modifié à 11.30 exceptionnellement.
Using Bar-Natan's and Lee's deformations of Khovanov homology of links, we define minus, plus, and infinity versions of Khovanov homology. Given an unorientable cobordism in [0,1]\times S^3 from a link L_0 to a link L_1, we define a mixed invariant as a map from the minus version of the Khovanov homology of L_0 to the plus version of the Khovanov homology of L_1. The construction is similar to the mixed invariant in Heegaard Floer homology. This invariant can be used to distinguish exotic cobordisms, that is, two cobordisms which are topologically isotopic but not smoothly isotopic. This is joint with Robert Lipshitz.
algebraic geometryanalysis of PDEsalgebraic topologycomplex variablesdifferential geometrygeneral topologygeometric topologyK-theory and homologymetric geometrysymplectic geometry
Audience: researchers in the topic
CRM - Séminaire du CIRGET / Géométrie et Topologie
Series comments: Hybrid seminar of geometry and topology. Laboratory : CIRGET - www.cirget.uqam.ca The homepage of the seminar is www.cirget.uqam.ca/fr/seminaires.html
[[Please provide your first and last name so that the speaker can identify you. Kindly submit your questions or comments using the chat box, not via audio.]]
The livestream is on Zoom at uqam.zoom.us/j/88383789249 It is recommended to subscribe to the CIRGET newsletter. Please send an email to haedrich.alexandra@uqam.ca , providing your name and affiliation.
Some talks can be seen at www.youtube.com/channel/UCLkFm-uEvXSf9y-iQtWOLWA
| Organizers: | Julien Keller*, Duncan McCoy |
| *contact for this listing |
