Topologically embedding spheres in knot traces

Patrick Orson (Boston College)

22-May-2020, 15:00-16:30 (6 years ago)

Abstract: Knot traces are smooth 4-manifolds with boundary, that are homotopic to the 2-sphere, and obtained by attaching a 2-handle to the 4-ball along a framed knot in the 3-sphere. I will give a complete characterisation for when the generator of the second homotopy group of a knot trace can be represented by a locally flat embedded 2-sphere with abelian exterior fundamental group. The answer is in terms of classical and computable invariants of the knot. This is a joint project with Feller, Miller, Nagel, Powell, and Ray.

algebraic geometryanalysis of PDEsalgebraic topologycomplex variablesdifferential geometrygeneral topologygeometric topologyK-theory and homologymetric geometryrepresentation theorysymplectic geometry

Audience: researchers in the topic


CRM - Séminaire du CIRGET / Géométrie et Topologie

Series comments: Hybrid seminar of geometry and topology. Laboratory : CIRGET - www.cirget.uqam.ca The homepage of the seminar is www.cirget.uqam.ca/fr/seminaires.html

[[Please provide your first and last name so that the speaker can identify you. Kindly submit your questions or comments using the chat box, not via audio.]]

The livestream is on Zoom at uqam.zoom.us/j/88383789249 It is recommended to subscribe to the CIRGET newsletter. Please send an email to haedrich.alexandra@uqam.ca , providing your name and affiliation.

Some talks can be seen at www.youtube.com/channel/UCLkFm-uEvXSf9y-iQtWOLWA

Organizers: Julien Keller*, Duncan McCoy
*contact for this listing

Export talk to