Steady gradient Kähler-Ricci solitons and Calabi-Yau metrics on C^n
Charles Cifarelli (UQAM)
Abstract: I will present recent joint work with V. Apostolov on a new construction of complete steady gradient Kähler-Ricci solitons on C^n, using the theory of hamiltonian 2 forms, introduced by Apostolov-Calderbank-Gauduchon-Tønnesen-Friedman, as an Ansatz. The metrics come in families of two types with distinct geometric behavior, which we call Cao type and Taub-NUT type. In particular, the Cao type and Taub-NUT type families have a volume growth rate of r^n and r^{2n-1}, respectively. Moreover, each Taub-NUT type family contains a codimension 1 subfamily of complete Ricci-flat metrics.
algebraic geometryanalysis of PDEsalgebraic topologycomplex variablesdifferential geometrygeneral topologygeometric topologyK-theory and homologymetric geometrysymplectic geometry
Audience: researchers in the topic
CRM - Séminaire du CIRGET / Géométrie et Topologie
Series comments: Hybrid seminar of geometry and topology. Laboratory : CIRGET - www.cirget.uqam.ca The homepage of the seminar is www.cirget.uqam.ca/fr/seminaires.html
[[Please provide your first and last name so that the speaker can identify you. Kindly submit your questions or comments using the chat box, not via audio.]]
The livestream is on Zoom at uqam.zoom.us/j/88383789249 It is recommended to subscribe to the CIRGET newsletter. Please send an email to haedrich.alexandra@uqam.ca , providing your name and affiliation.
Some talks can be seen at www.youtube.com/channel/UCLkFm-uEvXSf9y-iQtWOLWA
| Organizers: | Julien Keller*, Duncan McCoy |
| *contact for this listing |
