Motivations and progress on the Fried-Ghys conjecture
Chi Cheuk Tsang (UQAM)
Abstract: The Fried-Ghys conjecture states that any two transitive Anosov flows with orientable stable and unstable foliations are almost equivalent, i.e. they are the same up to homeomorphism and reparametrization after drilling out finitely many closed orbits. In this talk, we will discuss some motivations underlying this conjecture and some known partial results.
algebraic geometryanalysis of PDEsalgebraic topologycomplex variablesdifferential geometrygeneral topologygeometric topologyK-theory and homologymetric geometrysymplectic geometry
Audience: researchers in the topic
CRM - Séminaire du CIRGET / Géométrie et Topologie
Series comments: Hybrid seminar of geometry and topology. Laboratory : CIRGET - www.cirget.uqam.ca The homepage of the seminar is www.cirget.uqam.ca/fr/seminaires.html
[[Please provide your first and last name so that the speaker can identify you. Kindly submit your questions or comments using the chat box, not via audio.]]
The livestream is on Zoom at uqam.zoom.us/j/88383789249 It is recommended to subscribe to the CIRGET newsletter. Please send an email to haedrich.alexandra@uqam.ca , providing your name and affiliation.
Some talks can be seen at www.youtube.com/channel/UCLkFm-uEvXSf9y-iQtWOLWA
| Organizers: | Julien Keller*, Duncan McCoy |
| *contact for this listing |
