Foliations of asymptotically flat 3-manifolds by stable constant mean curvature spheres

Thomas Koerber (Vienna)

02-Nov-2021, 14:00-15:00 (4 years ago)

Abstract: Stable constant mean curvature spheres encode important information on the asymptotic geometry of initial data sets for isolated gravitational systems. In this talk, I will present a short new proof (joint with M. Eichmair) based on Lyapunov-Schmidt reduction of the existence of an asymptotic foliation of such an initial data set by stable constant mean curvature spheres. In the case where the scalar curvature is non-negative, our method also shows that the leaves of this foliation are the only large stable constant mean curvature spheres that enclose the center of the initial data set.

differential geometry

Audience: researchers in the topic


B.O.W.L Geometry Seminar

Organizers: Joel Fine, Lorenzo Foscolo*, Peter Topping
Curators: Jason D Lotay*, Costante Bellettini, Bruno Premoselli, Felix Schulze, Huy The Nguyen, Marco Guaraco, Michael Singer
*contact for this listing

Export talk to