Simple abelian varieties over finite fields with extreme point counts
Alexander D. Smith (UCLA)
09-Apr-2024, 19:00-20:00 (20 months ago)
Abstract: Given a compactly supported probability measure on the reals, we will give a necessary and sufficient condition for there to be a sequence of totally real algebraic integers whose distribution of conjugates approaches the measure. We use this result to prove that there are infinitely many totally positive algebraic integers X satisfying tr(X)/deg(X) < 1.899; previously, there were only known to be infinitely many such integers satisfying tr(X)/deg(X) < 2. We also will explain how our method can be used in the search for simple abelian varieties with extreme point counts.
number theory
Audience: researchers in the topic
| Organizers: | Sol Friedberg*, Benjamin Howard, Dubi Kelmer, Spencer Leslie, Keerthi Madapusi Pera, Bjorn Poonen*, Andrew Sutherland*, Wei Zhang* |
| *contact for this listing |
Export talk to
