# Set Partitions, Tableaux, and Subspace Profiles under Regular Split Semisimple Matrices

*Samrith Ram (IIIT Delhi)*

**Thu Feb 3, 08:30-09:30 (10 months ago)**

**Abstract: **In this talk we will introduce a family of polynomials $b_\lambda(q)$ indexed by integer partitions $\lambda$. These polynomials arise from an intriguing connection between two classical combinatorial classes, namely set partitions and standard tableaux. The polynomials $b_\lambda(q)$ can be derived from a new statistic on set partitions called the interlacing number which is a variant of the well-known crossing number of a set partition. These polynomials also have several interesting specializations: $b_\lambda(1)$ enumerates the number of set partitions of shape $\lambda$ and $b_\lambda(0)$ counts the number of standard tableaux of shape $\lambda$ while $b_\lambda(-1)$ equals the number of standard shifted tableaux of shape $\lambda$ respectively. When $q$ is a prime power $b_\lambda(q)$ counts (up to factors of $q$ and $q-1$) the number of subspaces in a finite vector space that transform under a regular diagonal matrix in a specified manner.

This is joint work with Amritanshu Prasad.

combinatorics

Audience: researchers in the topic

**ARCSIN - Algebra, Representations, Combinatorics and Symmetric functions in INdia **

**Series comments: **Timings may vary depending on the time zone of the speakers.

Organizers: | Amritanshu Prasad*, Apoorva Khare*, Pooja Singla*, R. Venkatesh* |

*contact for this listing |