Uhlenbeck compactification as a Bridgeland moduli space
Tuomas Tajakka (University of Washington)
Abstract: In recent years, Bridgeland stability conditions have become a central tool in the study of moduli of sheaves and their birational geometry. However, moduli spaces of Bridgeland semistable objects are known to be projective only in a limited number of cases. After reviewing the classical moduli theory of sheaves on curves and surfaces, I will present a new projectivity result for a Bridgeland moduli space on an arbitrary smooth projective surface, as well as discuss how to interpret the Uhlenbeck compactification of the moduli of slope stable vector bundles as a Bridgeland moduli space. The proof is based on studying a determinantal line bundle constructed by Bayer and Macrì. Time permitting, I will mention some ongoing work on PT-stability on a 3-fold.
algebraic geometry
Audience: researchers in the discipline
American Graduate Student Algebraic Geometry Seminar
Series comments: The American Graduate Student Algebraic Geometry Seminar (AGSAGS) is a virtual seminar by and for algebraic geometry graduate students.
The goal of this seminar is for graduate students to share their research through online talks and to provide an algebraic geometry graduate networking system. Grad students, postdocs, and professors are welcome to attend.
Seminars will be held on Mondays at 4 p.m. Eastern on Zoom. We hope this time is convenient for graduate students in the Americas, hence the name AGSAGS. Prior registration is required and interested participants should register here: sites.google.com/view/agsags/registration. In addition to graduate talks, there will be occasional social events.
| Organizers: | Jennifer Li*, Aline Zanardini*, Lena Ji, Samir Canning*, Roberto Albesiano* |
| *contact for this listing |
