Real reductive groups/atlas

External homepage

representation theory

MIT / University of Maryland

Audience: Advanced learners
Seminar series time: Thursday 15:30-17:00 in your time zone, UTC
Organizers: Jeffrey Adams*, David Vogan*
*contact for this listing

Beginning January 6, 2022.

This is will be a working/learning seminar on (infinite-dimensional) representations of real reductive groups, aimed at grad students and researchers having some familiarity with representations of compact Lie groups. We'll use the atlas software; you should follow the directions at to install it on your laptop.

The aim is for each seminar to last approximately one hour; the extra half hour in the schedule is meant to encourage lots of interaction with the audience. The idea of the seminar is that learning how the software does mathematical computations is an excellent way to understand the mathematics, as well as a great source of examples.

Notes for these seminars may be found in a OneNote notebook!AuIZlbpNWacjghnk9A-T16rcHmBn

You should be able to access this link without any Microsoft account, and from it you can pass to the pages for each individual seminar. We will post with each individual seminar a direct link to the page for that seminar; but this direct link requires that you have a (free) Microsoft account. (Many of you will already have such an account, if you use ANY Microsoft software; and in that case the direct link will work without a problem.) We apologize for the inconvenience to the rest of you.

A good general introduction to what the seminar is about can be found at

from a 2017 workshop. The mathematical subject matter is described in slides

from Vogan's lecture. The main ideas about how to realize this mathematics on a computer are described in Adams's lecture

A quick introduction to the syntax for the software is in van Leeuwen's presentation

First goal is to learn how the software represents real reductive groups (precisely, the group of real points of any complex connected reductive algebraic group) and their representations; making sense of the software will lead to an understanding of the underlying mathematics. Second goal is to use the software to investigate experimentally questions about reductive groups.

Upcoming talks
Past talks
Export series to