The direct sum morphism in (equivariant) Schubert calculus
David Anderson (Ohio State)
Abstract: Direct sum of subspaces defines a map on Grassmannians, which, after taking an appropriate limit, leads to a product-like structure on the infinite Grassmannian. The corresponding cohomology pullback coincides with a famous co-product on the ring of symmetric functions. I’ll describe torus-equivariant extensions of this setup, along with positivity results for structure constants, and some open questions. This story partially extends work by Thomas-Yong, Knutson-Lederer, and Lam-Lee-Shimozono, and connects to joint work with W. Fulton. (No special knowledge of Schubert calculus -- equivariant or not -- will be assumed.)
algebraic geometry
Audience: researchers in the topic
Stanford algebraic geometry seminar
Series comments: This seminar requires both advance registration, and a password. Register at stanford.zoom.us/meeting/register/tJEvcOuprz8vHtbL2_TTgZzr-_UhGvnr1EGv Password: 362880
If you have registered once, you are always registered for the seminar, and can join any future talk using the link you receive by email. If you lose the link, feel free to reregister. This might work too: stanford.zoom.us/j/95272114542
More seminar information (including slides and videos, when available): agstanford.com
Organizer: | Ravi Vakil* |
*contact for this listing |