The Hilbert scheme of infinite affine space

Burt Totaro (UCLA)

01-May-2020, 19:00-20:00 (2 years ago)

Abstract: I will discuss the Hilbert scheme of $d$ points in affine $n$-space, with some examples. This space has many irreducible components for $n$ at least 3 and is poorly understood. Nonetheless, in the limit where $n$ goes to infinity, we show that the Hilbert scheme of $d$ points in infinite affine space has a very simple homotopy type. In fact, it has the $A^1$-homotopy type of the infinite Grassmannian $BGL(d-1)$. Many questions remain. (Joint with Marc Hoyois, Joachim Jelisiejew, Denis Nardin, Maria Yakerson.)

algebraic geometryalgebraic topologyK-theory and homology

Audience: researchers in the topic

Stanford algebraic geometry seminar

Series comments: This seminar requires both advance registration, and a password. Register at Password: 362880

If you have registered once, you are always registered for the seminar, and can join any future talk using the link you receive by email. If you lose the link, feel free to reregister. This might work too:

More seminar information (including slides and videos, when available):

Organizer: Ravi Vakil*
*contact for this listing

Export talk to