Green’s conjecture via Koszul modules

Gavril Farkas (Humboldt University of Berlin)

17-Apr-2020, 18:00-19:30 (20 months ago)

Abstract: Using ideas from geometric group theory we provide a novel approach to Green’s Conjecture on syzygies of canonical curves. Via a strong vanishing result for Koszul modules we deduce that a general canonical curve of genus g satisfies Green’s Conjecture when the characteristic is zero or at least $(g+2)/2$. Our results are new in positive characteristic (and answer positively a conjecture of Eisenbud and Schreyer), whereas in characteristic zero they provide a different proof for theorems first obtained in two landmark papers by Voisin. Joint work with Aprodu, Papadima, Raicu and Weyman.

algebraic geometry

Audience: researchers in the topic

Stanford algebraic geometry seminar

Series comments: This seminar requires both advance registration, and a password. Register at Password: 362880

If you have registered once, you are always registered for the seminar, and can join any future talk using the link you receive by email. If you lose the link, feel free to reregister. This might work too:

More seminar information (including slides and videos, when available):

Organizer: Ravi Vakil*
*contact for this listing

Export talk to