Light cones for open quantum systems

Marius Lemm (University of Tübingen)

27-Jun-2023, 14:00-15:00 (10 months ago)

Abstract: We consider non-relativistic Markovian open quantum dynamics (MOQD) in continuous space. We show that, up to small-probability tails, the supports of quantum states evolving under MOQD propagate with finite speed in any finite-energy subspace. More precisely, if the initial quantum state is localized in space, then any finite-energy part of the solution of the von Neumann-Lindblad equation is approximately localized inside an energy-dependent light cone. We also obtain an explicit upper bound on the slope of this light cone (i.e., on the maximal speed). The general method can be used to derive propagation bounds for a variety of other quantum systems including Lieb-Robinson bounds for lattice bosons. Based on joint works with S. Breteaux, J. Faupin, D.H. Ou Yang, I.M. Sigal, and J. Zhang.

mathematical physics

Audience: researchers in the discipline


One world IAMP mathematical physics seminar

Series comments: In order to receive announcements, please send an email to IAMPseminars@gmail.com with “subscribe” in the subject line.

Organizers: Margherita Disertori*, Wojciech Dybalski*, Ian Jauslin, Hal Tasaki*
*contact for this listing

Export talk to