BEGIN:VCALENDAR
VERSION:2.0
PRODID:researchseminars.org
CALSCALE:GREGORIAN
X-WR-CALNAME:researchseminars.org
BEGIN:VEVENT
SUMMARY:Peter Kronheimer (Harvard)
DTSTART;VALUE=DATE-TIME:20200505T140000Z
DTEND;VALUE=DATE-TIME:20200505T151500Z
DTSTAMP;VALUE=DATE-TIME:20230208T071427Z
UID:rlgts/1
DESCRIPTION:Title: Ge
nus versus double-points for immersed surfaces\nby Peter Kronheimer (H
arvard) as part of Regensburg low-dimensional geometry and topology semina
r\n\n\nAbstract\nIf X is a simply-connected closed 4-manifold containing a
n oriented embedded surface S of genus g\, is there always an immersed sph
ere S' which represents the same homology class and has only g transverse
double-points? Colloquially\, can we "trade handles for double points"? Th
is is an open question\, though a "relative" version of the question (conc
erning surfaces in the 4-ball bounding a given knot in the 3-sphere) is kn
own to have a negative answer. For closed surfaces in closed 4-manifolds\,
a particularly interesting class of examples comes from algebraic geometr
y\, and includes the question of whether two smooth quintic surfaces can i
ntersect in a singular rational curve. We will explore whether gauge theor
y might be a tool that can be used to explore these questions.\n
LOCATION:https://researchseminars.org/talk/rlgts/1/
END:VEVENT
BEGIN:VEVENT
SUMMARY:Danny Calegari (University of Chicago)
DTSTART;VALUE=DATE-TIME:20200512T140000Z
DTEND;VALUE=DATE-TIME:20200512T151500Z
DTSTAMP;VALUE=DATE-TIME:20230208T071427Z
UID:rlgts/2
DESCRIPTION:Title: Ta
ut foliations leafwise branch cover the 2-sphere\nby Danny Calegari (U
niversity of Chicago) as part of Regensburg low-dimensional geometry and t
opology seminar\n\n\nAbstract\nA co-oriented foliation of an oriented 3-ma
nifold is taut if and only if there is a map from the 3-manifold to the 2-
sphere which is a branched cover when restricted to each leaf. I shall giv
e two proofs of this theorem and explain its relation to theorems of Ghys
and Donaldson.\n
LOCATION:https://researchseminars.org/talk/rlgts/2/
END:VEVENT
BEGIN:VEVENT
SUMMARY:Richard Webb (University of Manchester)
DTSTART;VALUE=DATE-TIME:20200519T140000Z
DTEND;VALUE=DATE-TIME:20200519T151500Z
DTSTAMP;VALUE=DATE-TIME:20230208T071427Z
UID:rlgts/3
DESCRIPTION:Title: Qu
asimorphisms on diffeomorphism groups\nby Richard Webb (University of
Manchester) as part of Regensburg low-dimensional geometry and topology se
minar\n\n\nAbstract\nI will explain how to construct an unbounded quasimor
phism on the group of isotopically-trivial diffeomorphisms of a surface of
positive genus. As a corollary the commutator length and fragmentation no
rm are both (stably) unbounded\, which solves a problem of Burago--Ivanov-
-Polterovich. The proof uses a new hyperbolic graph on which these groups
act by isometries\, which is inspired by techniques from mapping class gro
ups. This is joint work with Jonathan Bowden and Sebastian Hensel.\n
LOCATION:https://researchseminars.org/talk/rlgts/3/
END:VEVENT
BEGIN:VEVENT
SUMMARY:Zhenkun Li (MIT)
DTSTART;VALUE=DATE-TIME:20200526T140000Z
DTEND;VALUE=DATE-TIME:20200526T151500Z
DTSTAMP;VALUE=DATE-TIME:20230208T071427Z
UID:rlgts/4
DESCRIPTION:Title: In
stanton Floer homology and the depth of taut foliations\nby Zhenkun Li
(MIT) as part of Regensburg low-dimensional geometry and topology seminar
\n\n\nAbstract\nSutured manifold hierarchy is a powerful tool introduced b
y Gabai to study the topology of 3-manifolds. The length of a sutured mani
fold hierarchy gives us a measurement of how complicated the sutured manif
old is. Also\, using this tool\, Gabai proved the existence of finite dept
h taut foliations. However\, he didn’t discuss how finite the depth coul
d be.\nSutured Instanton Floer homology was introduced by Kronheimer and M
rowka and is defined on balanced sutured manifolds. In this talk\, I will
explain how sutured instanton Floer homology could offer us bounds for the
minimal length of a sutured hierarchy and the minimal depth of a foliatio
n on a fixed balanced sutured manifold.\n
LOCATION:https://researchseminars.org/talk/rlgts/4/
END:VEVENT
BEGIN:VEVENT
SUMMARY:Boyu Zhang (Princeton)
DTSTART;VALUE=DATE-TIME:20200609T140000Z
DTEND;VALUE=DATE-TIME:20200609T151500Z
DTSTAMP;VALUE=DATE-TIME:20230208T071427Z
UID:rlgts/5
DESCRIPTION:by Boyu Zhang (Princeton) as part of Regensburg low-dimensiona
l geometry and topology seminar\n\nAbstract: TBA\n
LOCATION:https://researchseminars.org/talk/rlgts/5/
END:VEVENT
BEGIN:VEVENT
SUMMARY:Gordana Matic (Univ. of Georgia/MPIM Bonn)
DTSTART;VALUE=DATE-TIME:20200616T140000Z
DTEND;VALUE=DATE-TIME:20200616T151500Z
DTSTAMP;VALUE=DATE-TIME:20230208T071427Z
UID:rlgts/6
DESCRIPTION:Title: Sp
ectral order invariant and obstruction to Stein fillability\nby Gordan
a Matic (Univ. of Georgia/MPIM Bonn) as part of Regensburg low-dimensional
geometry and topology seminar\n\n\nAbstract\nIn this joint work with Caga
tay Kutluhan\, Jeremy Van Horn- Morris and Andy Wand\, we define an invari
ant of contact structures in dimension three arising from introducing a f
iltration on the boundary operator in Heegaard Floer homology. This invar
iant takes values in the set $\\Z_{\\geq0}\\cup\\{\\infty\\}$. It is zero
for overtwisted contact structures\, $\\infty$ for Stein fillable contact
structures\, non-decreasing under Legendrian surgery\, and computable from
any supporting open book decomposition. I will give the definition and d
iscuss computability of the invariant. As an application\, we give an eas
ily computable obstruction to Stein fillability on closed contact 3-manifo
lds with non-vanishing Ozsváth-Szabó contact class.\n
LOCATION:https://researchseminars.org/talk/rlgts/6/
END:VEVENT
BEGIN:VEVENT
SUMMARY:Kathryn Mann (Cornell)
DTSTART;VALUE=DATE-TIME:20200630T140000Z
DTEND;VALUE=DATE-TIME:20200630T151500Z
DTSTAMP;VALUE=DATE-TIME:20230208T071427Z
UID:rlgts/7
DESCRIPTION:Title: La
rge-scale geometry of big mapping class groups\nby Kathryn Mann (Corne
ll) as part of Regensburg low-dimensional geometry and topology seminar\n\
n\nAbstract\nMapping class groups of infinite type surfaces are not finite
ly generated (nor even are they locally compact) groups\, but in many case
s one can still meaningfully talk about their large scale geometry. I will
explain joint work with Kasra Rafi on the problem of which surfaces have
mapping class groups with nontrivial coarse geometry\, and how this relate
s to questions of actions on arc and curve complexes.\n
LOCATION:https://researchseminars.org/talk/rlgts/7/
END:VEVENT
BEGIN:VEVENT
SUMMARY:Mikhail Khovanov (Columbia University)
DTSTART;VALUE=DATE-TIME:20200707T140000Z
DTEND;VALUE=DATE-TIME:20200707T151500Z
DTSTAMP;VALUE=DATE-TIME:20230208T071427Z
UID:rlgts/8
DESCRIPTION:Title: Fr
om SL(2) to GL(N) foam evaluation\nby Mikhail Khovanov (Columbia Unive
rsity) as part of Regensburg low-dimensional geometry and topology seminar
\n\n\nAbstract\nFoams in 3-space are cobordisms between planar graphs that
are heavily used in link homology theories. In this talk we'll explain ho
w foam theory can be built from the ground up starting with an evaluation
of closed foams\, for SL(2) foams\, then GL(2) foams\, and finally GL(N) f
oams for any N. The talk is based on joint work with Louis-Hadrien Robert
and on L.-H. Robert and Emmanuel Wagner's work on foam evaluation.\n
LOCATION:https://researchseminars.org/talk/rlgts/8/
END:VEVENT
BEGIN:VEVENT
SUMMARY:Claudius Zibrowius (UBC Vancouver)
DTSTART;VALUE=DATE-TIME:20200714T140000Z
DTEND;VALUE=DATE-TIME:20200714T151500Z
DTSTAMP;VALUE=DATE-TIME:20230208T071427Z
UID:rlgts/9
DESCRIPTION:Title: Th
in links and Conway spheres\nby Claudius Zibrowius (UBC Vancouver) as
part of Regensburg low-dimensional geometry and topology seminar\n\n\nAbst
ract\nWhen does Dehn surgery along a knot give an L-space? More generally\
, when does splicing two knot complements give an L-space? Hanselman\, Ras
mussen and Watson gave very compelling answers to these questions using th
eir technology of immersed curves for three-manifolds with torus boundary.
Similar invariants have been developed for four-ended tangles. We use tho
se invariants to study various notions of thinness in both Heegaard Floer
and Khovanov homology from the perspective of tangle decompositions along
Conway spheres. Interestingly\, our results bear strong resemblance to the
aforementioned results about L-spaces. Also\, we observe strong similarit
ies between Heegaard Floer and Khovanov homology that lead us to ask: What
is a thin link? This is joint work with Artem Kotelskiy and Liam Watson.\
n
LOCATION:https://researchseminars.org/talk/rlgts/9/
END:VEVENT
BEGIN:VEVENT
SUMMARY:Lisa Piccirillo (MIT)
DTSTART;VALUE=DATE-TIME:20200623T140000Z
DTEND;VALUE=DATE-TIME:20200623T151500Z
DTSTAMP;VALUE=DATE-TIME:20230208T071427Z
UID:rlgts/10
DESCRIPTION:Title: T
he trace embedding lemma and PL surfaces\nby Lisa Piccirillo (MIT) as
part of Regensburg low-dimensional geometry and topology seminar\n\n\nAbst
ract\n4-manifold topologists have long been interested in understanding sm
ooth (resp. topological) embedded surfaces in smooth (resp. topological) 4
-manifolds\, and as such have developed rich suites of tools for obstructi
ng the existence of smooth (resp. topological) surfaces. Understanding PL
surfaces in smooth 4-manifolds has historically garnered less interest\, b
ut several problems about PL surfaces have recently arisen in modern lines
of questioning. Presently there are far fewer tools available to obstruct
PL surfaces. In this talk\, I’ll discuss how to use a classical observa
tion\, called the trace embedding lemma\, to repurpose smooth surface obst
ructions as PL surface obstructions. I’ll discuss applications of these
retooled obstructions to problems about spinelessness\, exotica\, and geom
etrically simply connectedness. This is joint work with Kyle Hayden.\n
LOCATION:https://researchseminars.org/talk/rlgts/10/
END:VEVENT
BEGIN:VEVENT
SUMMARY:Marc Lackenby (University of Oxford)
DTSTART;VALUE=DATE-TIME:20200721T140000Z
DTEND;VALUE=DATE-TIME:20200721T151500Z
DTSTAMP;VALUE=DATE-TIME:20230208T071427Z
UID:rlgts/11
DESCRIPTION:Title: K
not genus in a fixed 3-manifold\nby Marc Lackenby (University of Oxfor
d) as part of Regensburg low-dimensional geometry and topology seminar\n\n
\nAbstract\nThe genus of a knot is the minimal genus of any of its Seifert
surfaces. This is a fundamental measure of a knot's complexity. It genera
lises naturally to homologically trivial knots in an arbitrary 3-manifold.
Agol\, Hass and Thurston showed that the problem of determining the genus
of a knot in a 3-manifold is hard. More specifically\, the problem of sho
wing that the genus is at most some integer g is NP-complete. Hence\, the
problem of showing that the genus is exactly some integer g is not in NP\,
assuming a standard conjecture in complexity theory. On the other hand\,
I proved that the problem of determining the genus of a knot in the 3-sphe
re is in NP. In my talk\, I will discuss the problem of determining knot g
enus in a fixed 3-manifold. I will outline why this problem is also in NP\
, which is joint work with Mehdi Yazdi. The proof involves the computation
of the Thurston norm ball for knot exteriors.\n
LOCATION:https://researchseminars.org/talk/rlgts/11/
END:VEVENT
BEGIN:VEVENT
SUMMARY:Marco Marengon (MPIM Bonn)
DTSTART;VALUE=DATE-TIME:20201103T150000Z
DTEND;VALUE=DATE-TIME:20201103T161500Z
DTSTAMP;VALUE=DATE-TIME:20230208T071427Z
UID:rlgts/12
DESCRIPTION:Title: N
on-orientable knot cobordisms and torsion order in Floer homologies\nb
y Marco Marengon (MPIM Bonn) as part of Regensburg low-dimensional geometr
y and topology seminar\n\nAbstract: TBA\n
LOCATION:https://researchseminars.org/talk/rlgts/12/
END:VEVENT
BEGIN:VEVENT
SUMMARY:Louis-Hadrien Robert (Université du Luxembourg)
DTSTART;VALUE=DATE-TIME:20201117T150000Z
DTEND;VALUE=DATE-TIME:20201117T161500Z
DTSTAMP;VALUE=DATE-TIME:20230208T071427Z
UID:rlgts/13
DESCRIPTION:Title: C
ategorification of 1 and of the Alexander polynomial\nby Louis-Hadrien
Robert (Université du Luxembourg) as part of Regensburg low-dimensional
geometry and topology seminar\n\n\nAbstract\nI'll give a combinatorial and
down-to-earth definition of the symmetric gl(1) homology. It is a (non-tr
ivial) link homology which categorifies the trivial link invariant (equal
to 1 on every link). Then I'll explain how to use this construction to obt
ain colored categorification of the Alexander polynomial. (joint with E. W
agner)\n
LOCATION:https://researchseminars.org/talk/rlgts/13/
END:VEVENT
BEGIN:VEVENT
SUMMARY:Sarah Rasmussen (University of Cambridge)
DTSTART;VALUE=DATE-TIME:20201124T150000Z
DTEND;VALUE=DATE-TIME:20201124T161500Z
DTSTAMP;VALUE=DATE-TIME:20230208T071427Z
UID:rlgts/14
DESCRIPTION:Title: T
aut foliations from left orders in Heegaard genus 2\nby Sarah Rasmusse
n (University of Cambridge) as part of Regensburg low-dimensional geometry
and topology seminar\n\nAbstract: TBA\n
LOCATION:https://researchseminars.org/talk/rlgts/14/
END:VEVENT
BEGIN:VEVENT
SUMMARY:Tao Li (Boston College)
DTSTART;VALUE=DATE-TIME:20201201T150000Z
DTEND;VALUE=DATE-TIME:20201201T161500Z
DTSTAMP;VALUE=DATE-TIME:20230208T071427Z
UID:rlgts/15
DESCRIPTION:by Tao Li (Boston College) as part of Regensburg low-dimension
al geometry and topology seminar\n\nAbstract: TBA\n
LOCATION:https://researchseminars.org/talk/rlgts/15/
END:VEVENT
BEGIN:VEVENT
SUMMARY:Ciprian Manolescu (Stanford University)
DTSTART;VALUE=DATE-TIME:20201208T150000Z
DTEND;VALUE=DATE-TIME:20201208T161500Z
DTSTAMP;VALUE=DATE-TIME:20230208T071427Z
UID:rlgts/16
DESCRIPTION:Title: R
elative genus bounds in indefinite four-manifolds\nby Ciprian Manolesc
u (Stanford University) as part of Regensburg low-dimensional geometry and
topology seminar\n\nAbstract: TBA\n
LOCATION:https://researchseminars.org/talk/rlgts/16/
END:VEVENT
BEGIN:VEVENT
SUMMARY:Masaki Taniguchi (Riken)
DTSTART;VALUE=DATE-TIME:20201110T150000Z
DTEND;VALUE=DATE-TIME:20201110T161500Z
DTSTAMP;VALUE=DATE-TIME:20230208T071427Z
UID:rlgts/17
DESCRIPTION:Title: F
iltered instanton Floer homology and the 3-dimensional homology cobordism
group\nby Masaki Taniguchi (Riken) as part of Regensburg low-dimension
al geometry and topology seminar\n\n\nAbstract\nWe introduce a family of r
eal-valued homology cobordism invariants $r_s(Y)$ of oriented homology 3-s
pheres. The invariants $r_s(Y)$ are based on a quantitative construction o
f filtered instanton Floer homology. Using our invariants\, we give severa
l new constraints of the set of smooth boundings of homology 3-spheres. As
one of the corollaries\, we give infinitely many homology 3-spheres which
cannot bound any definite 4-manifold. As another corollary\, we show that
if the 1-surgery of a knot has negative Froyshov invariant\, then the $1/
n$-surgeries ($n>0$) of the knot are linearly independent in the homology
cobordism group. This is joint work with Yuta Nozaki and Kouki Sato.\n
LOCATION:https://researchseminars.org/talk/rlgts/17/
END:VEVENT
BEGIN:VEVENT
SUMMARY:Siddhi Krishna (Georgia Tech)
DTSTART;VALUE=DATE-TIME:20201215T150000Z
DTEND;VALUE=DATE-TIME:20201215T161500Z
DTSTAMP;VALUE=DATE-TIME:20230208T071427Z
UID:rlgts/18
DESCRIPTION:Title: T
aut foliations and Dehn surgery along positive braid knots\nby Siddhi
Krishna (Georgia Tech) as part of Regensburg low-dimensional geometry and
topology seminar\n\nAbstract: TBA\n
LOCATION:https://researchseminars.org/talk/rlgts/18/
END:VEVENT
BEGIN:VEVENT
SUMMARY:tba
DTSTART;VALUE=DATE-TIME:20201222T150000Z
DTEND;VALUE=DATE-TIME:20201222T161500Z
DTSTAMP;VALUE=DATE-TIME:20230208T071427Z
UID:rlgts/19
DESCRIPTION:by tba as part of Regensburg low-dimensional geometry and topo
logy seminar\n\nAbstract: TBA\n
LOCATION:https://researchseminars.org/talk/rlgts/19/
END:VEVENT
BEGIN:VEVENT
SUMMARY:Paul Feehan (Rutgers)
DTSTART;VALUE=DATE-TIME:20210119T150000Z
DTEND;VALUE=DATE-TIME:20210119T161500Z
DTSTAMP;VALUE=DATE-TIME:20230208T071427Z
UID:rlgts/21
DESCRIPTION:Title: M
orse-Bott theory on analytic spaces and applications to topology of smooth
4-manifolds\nby Paul Feehan (Rutgers) as part of Regensburg low-dimen
sional geometry and topology seminar\n\nAbstract: TBA\n
LOCATION:https://researchseminars.org/talk/rlgts/21/
END:VEVENT
BEGIN:VEVENT
SUMMARY:Daniel Ruberman (Brandeis)
DTSTART;VALUE=DATE-TIME:20210126T150000Z
DTEND;VALUE=DATE-TIME:20210126T161500Z
DTSTAMP;VALUE=DATE-TIME:20230208T071427Z
UID:rlgts/22
DESCRIPTION:Title: T
he diffeomorphism group of a 4-manifold\nby Daniel Ruberman (Brandeis)
as part of Regensburg low-dimensional geometry and topology seminar\n\nAb
stract: TBA\n
LOCATION:https://researchseminars.org/talk/rlgts/22/
END:VEVENT
BEGIN:VEVENT
SUMMARY:Luisa Paoluzzi (University of Aix-Marseille)
DTSTART;VALUE=DATE-TIME:20210202T150000Z
DTEND;VALUE=DATE-TIME:20210202T161500Z
DTSTAMP;VALUE=DATE-TIME:20230208T071427Z
UID:rlgts/23
DESCRIPTION:Title: C
yclic branched covers of alternating knots\nby Luisa Paoluzzi (Univers
ity of Aix-Marseille) as part of Regensburg low-dimensional geometry and t
opology seminar\n\nAbstract: TBA\n
LOCATION:https://researchseminars.org/talk/rlgts/23/
END:VEVENT
BEGIN:VEVENT
SUMMARY:Liam Watson (University of British Columbia)
DTSTART;VALUE=DATE-TIME:20210209T150000Z
DTEND;VALUE=DATE-TIME:20210209T161500Z
DTSTAMP;VALUE=DATE-TIME:20230208T071427Z
UID:rlgts/24
DESCRIPTION:Title: S
ymmetry and mutation\nby Liam Watson (University of British Columbia)
as part of Regensburg low-dimensional geometry and topology seminar\n\nAbs
tract: TBA\n
LOCATION:https://researchseminars.org/talk/rlgts/24/
END:VEVENT
BEGIN:VEVENT
SUMMARY:Nick Salter (Columbia)
DTSTART;VALUE=DATE-TIME:20210216T150000Z
DTEND;VALUE=DATE-TIME:20210216T161500Z
DTSTAMP;VALUE=DATE-TIME:20230208T071427Z
UID:rlgts/25
DESCRIPTION:Title: r
-spin mapping class groups and applications\nby Nick Salter (Columbia)
as part of Regensburg low-dimensional geometry and topology seminar\n\nAb
stract: TBA\n
LOCATION:https://researchseminars.org/talk/rlgts/25/
END:VEVENT
BEGIN:VEVENT
SUMMARY:Guillem Cazassus (Oxford)
DTSTART;VALUE=DATE-TIME:20210427T140000Z
DTEND;VALUE=DATE-TIME:20210427T151500Z
DTSTAMP;VALUE=DATE-TIME:20230208T071427Z
UID:rlgts/26
DESCRIPTION:Title: T
he earring correspondence of the pillowcase\nby Guillem Cazassus (Oxfo
rd) as part of Regensburg low-dimensional geometry and topology seminar\n\
n\nAbstract\nSingular instanton homology is a knot invariant introduced by
Kronheimer and Mrowka. It is deeply tied to Khovanov homology\, and among
other things\, permits to show that the latter detects the unknot.\n\nIn
order to compute singular instanton homology\, Hedden\, Herald and Kirk de
fined a symplectic (Atiyah-Floer) analogue\, called pillowcase homology. T
his is a Lagrangian Floer homology in the traceless character variety of t
he four-punctured sphere.\n\nWe study the Lagrangian correspondence induce
d by the earring tangle\, an essential ingredient in Kronheimer-Mrowka's c
onstruction. Our computation suggests that figure eight bubbling — a sub
tle degeneration phenomenon predicted by Bottman and Wehrheim — appears
in the context of traceless character varieties. This is joint work with C
hris Herald\, Paul Kirk and Artem Kotelskiy.\n
LOCATION:https://researchseminars.org/talk/rlgts/26/
END:VEVENT
BEGIN:VEVENT
SUMMARY:Zoltán Szabó (Princeton)
DTSTART;VALUE=DATE-TIME:20210504T140000Z
DTEND;VALUE=DATE-TIME:20210504T151500Z
DTSTAMP;VALUE=DATE-TIME:20230208T071427Z
UID:rlgts/27
DESCRIPTION:Title: K
not Floer homology constructions and the Pong Algebra\nby Zoltán Szab
ó (Princeton) as part of Regensburg low-dimensional geometry and topology
seminar\n\nAbstract: TBA\n
LOCATION:https://researchseminars.org/talk/rlgts/27/
END:VEVENT
BEGIN:VEVENT
SUMMARY:John Baldwin (Boston College)
DTSTART;VALUE=DATE-TIME:20210511T140000Z
DTEND;VALUE=DATE-TIME:20210511T151500Z
DTSTAMP;VALUE=DATE-TIME:20230208T071427Z
UID:rlgts/28
DESCRIPTION:Title: I
nstanton L-spaces and splicing\nby John Baldwin (Boston College) as pa
rt of Regensburg low-dimensional geometry and topology seminar\n\nAbstract
: TBA\n
LOCATION:https://researchseminars.org/talk/rlgts/28/
END:VEVENT
BEGIN:VEVENT
SUMMARY:Cameron Gordon (UT Austin)
DTSTART;VALUE=DATE-TIME:20210608T140000Z
DTEND;VALUE=DATE-TIME:20210608T151500Z
DTSTAMP;VALUE=DATE-TIME:20230208T071427Z
UID:rlgts/29
DESCRIPTION:Title: T
oroidal 3-manifolds and the properties in the L-space Conjecture\nby C
ameron Gordon (UT Austin) as part of Regensburg low-dimensional geometry a
nd topology seminar\n\nAbstract: TBA\n
LOCATION:https://researchseminars.org/talk/rlgts/29/
END:VEVENT
BEGIN:VEVENT
SUMMARY:Steven Frankel (Washington University in St. Louis)
DTSTART;VALUE=DATE-TIME:20210713T140000Z
DTEND;VALUE=DATE-TIME:20210713T151500Z
DTSTAMP;VALUE=DATE-TIME:20230208T071427Z
UID:rlgts/30
DESCRIPTION:by Steven Frankel (Washington University in St. Louis) as part
of Regensburg low-dimensional geometry and topology seminar\n\nAbstract:
TBA\n
LOCATION:https://researchseminars.org/talk/rlgts/30/
END:VEVENT
BEGIN:VEVENT
SUMMARY:Arunima Ray (MPIM Bonn)
DTSTART;VALUE=DATE-TIME:20210601T140000Z
DTEND;VALUE=DATE-TIME:20210601T151500Z
DTSTAMP;VALUE=DATE-TIME:20230208T071427Z
UID:rlgts/31
DESCRIPTION:Title: A
surface embedding theorem\nby Arunima Ray (MPIM Bonn) as part of Rege
nsburg low-dimensional geometry and topology seminar\n\nAbstract: TBA\n
LOCATION:https://researchseminars.org/talk/rlgts/31/
END:VEVENT
BEGIN:VEVENT
SUMMARY:Jonathan Zung (Princeton)
DTSTART;VALUE=DATE-TIME:20210706T140000Z
DTEND;VALUE=DATE-TIME:20210706T151500Z
DTSTAMP;VALUE=DATE-TIME:20230208T071427Z
UID:rlgts/32
DESCRIPTION:Title: R
eeb flows transverse to foliations\nby Jonathan Zung (Princeton) as pa
rt of Regensburg low-dimensional geometry and topology seminar\n\n\nAbstra
ct\nEliashberg and Thurston showed that (roughly) $C^2$ taut foliations on
3-manifolds can be approximated by tight contact structures. I will expla
in a new approach to this theorem which allows one to control the resultin
g Reeb flow and hence produce many hypertight contact structures. Along th
e way\, I will explain how harmonic transverse measures may be used to und
erstand the holonomy of foliations.\n
LOCATION:https://researchseminars.org/talk/rlgts/32/
END:VEVENT
BEGIN:VEVENT
SUMMARY:Alexandra Kjuchukova (Notre Dame)
DTSTART;VALUE=DATE-TIME:20210629T140000Z
DTEND;VALUE=DATE-TIME:20210629T151500Z
DTSTAMP;VALUE=DATE-TIME:20230208T071427Z
UID:rlgts/33
DESCRIPTION:Title: C
overs of S^3 bounding covers of B^4\nby Alexandra Kjuchukova (Notre Da
me) as part of Regensburg low-dimensional geometry and topology seminar\n\
n\nAbstract\nLet $G$ be a group\, $K$ a knot and $\\rho$ a surjective homo
morphism $\\pi_1(S^3 \\backslash K) \\to G$. When does a branched cover of
$S^3$ determined by $\\rho$ extend over $B^4$\, with a smooth branching l
ocus $F$? Previously\, the answer was only known under quite strong assump
tions\, e.g. when K is slice and G a dihedral group. I will define a new i
nvariant which detects the existence of such an extension for all knots an
d all metabelian groups. I will give examples of computing the obstruction
and constructing the desired surface $F$. Joint work with Kent Orr.\n
LOCATION:https://researchseminars.org/talk/rlgts/33/
END:VEVENT
BEGIN:VEVENT
SUMMARY:Rostislav Akhmechet (University of Virginia)
DTSTART;VALUE=DATE-TIME:20210518T140000Z
DTEND;VALUE=DATE-TIME:20210518T151500Z
DTSTAMP;VALUE=DATE-TIME:20230208T071427Z
UID:rlgts/34
DESCRIPTION:Title: A
nchored foams and annular homology\nby Rostislav Akhmechet (University
of Virginia) as part of Regensburg low-dimensional geometry and topology
seminar\n\nAbstract: TBA\n
LOCATION:https://researchseminars.org/talk/rlgts/34/
END:VEVENT
BEGIN:VEVENT
SUMMARY:no talk
DTSTART;VALUE=DATE-TIME:20210525T140000Z
DTEND;VALUE=DATE-TIME:20210525T151500Z
DTSTAMP;VALUE=DATE-TIME:20230208T071427Z
UID:rlgts/35
DESCRIPTION:by no talk as part of Regensburg low-dimensional geometry and
topology seminar\n\nAbstract: TBA\n
LOCATION:https://researchseminars.org/talk/rlgts/35/
END:VEVENT
BEGIN:VEVENT
SUMMARY:Thomas Barthelmé (Queen's University)
DTSTART;VALUE=DATE-TIME:20210615T140000Z
DTEND;VALUE=DATE-TIME:20210615T151500Z
DTSTAMP;VALUE=DATE-TIME:20230208T071427Z
UID:rlgts/36
DESCRIPTION:by Thomas Barthelmé (Queen's University) as part of Regensbur
g low-dimensional geometry and topology seminar\n\nAbstract: TBA\n
LOCATION:https://researchseminars.org/talk/rlgts/36/
END:VEVENT
BEGIN:VEVENT
SUMMARY:tba
DTSTART;VALUE=DATE-TIME:20210622T140000Z
DTEND;VALUE=DATE-TIME:20210622T151500Z
DTSTAMP;VALUE=DATE-TIME:20230208T071427Z
UID:rlgts/37
DESCRIPTION:by tba as part of Regensburg low-dimensional geometry and topo
logy seminar\n\nAbstract: TBA\n
LOCATION:https://researchseminars.org/talk/rlgts/37/
END:VEVENT
END:VCALENDAR