BEGIN:VCALENDAR
VERSION:2.0
PRODID:researchseminars.org
CALSCALE:GREGORIAN
X-WR-CALNAME:researchseminars.org
BEGIN:VEVENT
SUMMARY:Eivind Schneider (Hradec Kralove University)
DTSTART;VALUE=DATE-TIME:20200415T093000Z
DTEND;VALUE=DATE-TIME:20200415T103000Z
DTSTAMP;VALUE=DATE-TIME:20210514T193312Z
UID:PHK-cohomology-seminar/1
DESCRIPTION:Title: Differential invariants in thermodynamics\nby Eivind Sc
hneider (Hradec Kralove University) as part of Prague-Hradec Kralove semin
ar Cohomology in algebra\, geometry\, physics and statistics\n\nLecture he
ld in ZOOM meeting ID 895-276-2498.\n\nAbstract\nIt is well known that
contact geometry gives the appropriate framework for formulating thermodyn
amics: Thermodynamic states can be interpreted as Legendrian submanifolds
of a certain contact manifold. The existence of a metric on thermodynamic
states has also received some attention in the last decades. The metric ca
n be interpreted as the variance of an underlying probability measure. Les
s studied is the action of the affine group that appears naturally in this
context as the group preserving the variance. We study this group action
by finding generators of its algebra of scalar differential invariants\, w
hich intuitively can be thought of as the observables in the theory. In th
e end\, we discuss the relation between the invariants and some well-known
physical quantities in thermodynamics.\n
LOCATION:https://researchseminars.org/talk/PHK-cohomology-seminar/1/
END:VEVENT
BEGIN:VEVENT
SUMMARY:Anton Galaev (Hradec Kralove University)
DTSTART;VALUE=DATE-TIME:20200422T093000Z
DTEND;VALUE=DATE-TIME:20200422T103000Z
DTSTAMP;VALUE=DATE-TIME:20210514T193312Z
UID:PHK-cohomology-seminar/2
DESCRIPTION:Title: Non-diffeomorphic Reeb foliations and modified Godbillon-Ve
y class\nby Anton Galaev (Hradec Kralove University) as part of Prague
-Hradec Kralove seminar Cohomology in algebra\, geometry\, physics and sta
tistics\n\n\nAbstract\nThe definition of the Reeb foliation depends upon t
wo real functions satisfying certain conditions. All these foliations are
pairwise homeomorphic and have trivial Godbillon-Vey class. We construct e
xplicit examples of the Reeb foliations that are not diffeomorphic. For th
is purpose we show that a modified Godbillon-Vey class defined by Losik is
non-trivial for some Reeb foliations and trivial for some other Reeb foli
ations. This characteristic class takes values in the second order frame b
undle of the leaf space of the foliation. This is a joint work with Ya. Ba
zaikin and P. Gumenyuk.\n
LOCATION:https://researchseminars.org/talk/PHK-cohomology-seminar/2/
END:VEVENT
BEGIN:VEVENT
SUMMARY:Igor Khavkine (Institute of Mathematics\, Czech Academy of Scien
ces)
DTSTART;VALUE=DATE-TIME:20200429T093000Z
DTEND;VALUE=DATE-TIME:20200429T103000Z
DTSTAMP;VALUE=DATE-TIME:20210514T193312Z
UID:PHK-cohomology-seminar/3
DESCRIPTION:Title: Triangular decoupling of systems of differential equations\
, with application to separation of variables on Schwarzschild spacetime\nby Igor Khavkine (Institute of Mathematics\, Czech Academy of Scienc
es) as part of Prague-Hradec Kralove seminar Cohomology in algebra\, geome
try\, physics and statistics\n\n\nAbstract\nCertain tensor wave equations
admit a complete separation of variables on the Schwarzschild spacetime (s
tatic\, spherically symmetric black hole)\, resulting in complicated syste
ms of radial mode ODEs. The spectral theory of these systems has important
applications to the stability analysis electromagnetic and gravitational
perturbations of the black hole. However\, almost none of the important qu
estions about the radial mode equations can be answered in their original
form. I will discuss a drastic simplification of these ODE systems to spar
se upper triangular form that is directly susceptible to spectral analysis
. Essential to this simplification are geometric properties of the origina
l tensor wave equations\, ideas from homological algebra and from the theo
ry of ODEs with rational coefficients. Based on [arXiv:1711.00585\, 1801.0
9800\, 2004.09651]\n\nPlease contact the speaker or an organizer to get Zo
om livestream access information.\n
LOCATION:https://researchseminars.org/talk/PHK-cohomology-seminar/3/
END:VEVENT
BEGIN:VEVENT
SUMMARY:Mikhail Roop (Moscow State University)
DTSTART;VALUE=DATE-TIME:20200506T093000Z
DTEND;VALUE=DATE-TIME:20200506T103000Z
DTSTAMP;VALUE=DATE-TIME:20210514T193312Z
UID:PHK-cohomology-seminar/4
DESCRIPTION:Title: Shock waves in Euler flows of gases\nby Mikhail Roop (M
oscow State University) as part of Prague-Hradec Kralove seminar Cohomolog
y in algebra\, geometry\, physics and statistics\n\n\nAbstract\nWe study n
on-stationary 1-dimensional flows of gases described by a quasilinear syst
em of differential equations including Euler equation and continuity equat
ion. We show that equations in question essentially depend on thermodynami
cs of the medium. We represent the system by means of 2-forms on zero-jet
space and get some exact solutions by means of such a representation. The
solutions obtained are multivalued\, we find caustics and shock wave front
. The method can be applied to any thermodynamic state of the medium as we
ll as to any thermodynamic process. The talk is based on our joint paper w
ith Valentin Lychagin\, arXiv:2004.05015.\n\nPlease contact the speaker or
an organizer to get Zoom livestream access information.\n
LOCATION:https://researchseminars.org/talk/PHK-cohomology-seminar/4/
END:VEVENT
BEGIN:VEVENT
SUMMARY:Alexei Kotov (University Hradec Kralove)
DTSTART;VALUE=DATE-TIME:20200513T093000Z
DTEND;VALUE=DATE-TIME:20200513T103000Z
DTSTAMP;VALUE=DATE-TIME:20210514T193312Z
UID:PHK-cohomology-seminar/5
DESCRIPTION:Title: Geometry of gauge PDEs I\nby Alexei Kotov (University H
radec Kralove) as part of Prague-Hradec Kralove seminar Cohomology in alge
bra\, geometry\, physics and statistics\n\n\nAbstract\nI will show how jet
spaces and Q-bundles can be incorporated into an invariant mathematical d
escription of gauge theories.\n\nPlease contact the speaker or an organize
r to get Zoom livestream access information.\n
LOCATION:https://researchseminars.org/talk/PHK-cohomology-seminar/5/
END:VEVENT
BEGIN:VEVENT
SUMMARY:Leonid Positselski (Institute of Mathematics\, Czech Academy of Sc
iences)
DTSTART;VALUE=DATE-TIME:20200401T093000Z
DTEND;VALUE=DATE-TIME:20200401T103000Z
DTSTAMP;VALUE=DATE-TIME:20210514T193312Z
UID:PHK-cohomology-seminar/6
DESCRIPTION:Title: Koszul algebras and one-dependent random 0-1 sequences\
nby Leonid Positselski (Institute of Mathematics\, Czech Academy of Scienc
es) as part of Prague-Hradec Kralove seminar Cohomology in algebra\, geome
try\, physics and statistics\n\n\nAbstract\nKoszul algebras are a natural
class of graded algebras with\nquadratic relations\, defined by a series o
f homological conditions.\nTo a Koszul algebra over a field with finite-di
mensional components\,\none can assign a one-dependent stochastic 0-1 sequ
ence\, which carries\ninformation about the dimensions of the algebra's gr
ading components.\nThis construction allows to show that the Hilbert serie
s of a Koszul\nalgebra can be extended meromorphically to the circle of do
uble radius.\nConjecturally\, such Hilbert series are meromorphic in the w
hole\ncomplex plane (and consequently\, rational).\n
LOCATION:https://researchseminars.org/talk/PHK-cohomology-seminar/6/
END:VEVENT
BEGIN:VEVENT
SUMMARY:Alexei Kotov (University Hradec Kralove)
DTSTART;VALUE=DATE-TIME:20200520T093000Z
DTEND;VALUE=DATE-TIME:20200520T103000Z
DTSTAMP;VALUE=DATE-TIME:20210514T193312Z
UID:PHK-cohomology-seminar/7
DESCRIPTION:Title: Geometry of gauge PDEs II\nby Alexei Kotov (University
Hradec Kralove) as part of Prague-Hradec Kralove seminar Cohomology in alg
ebra\, geometry\, physics and statistics\n\n\nAbstract\nI will show how je
t spaces and Q-bundles can be incorporated into an invariant mathematical
description of gauge theories.\n\n(This is a continuation of Alexei Koto
v's seminar from last week.)\n
LOCATION:https://researchseminars.org/talk/PHK-cohomology-seminar/7/
END:VEVENT
BEGIN:VEVENT
SUMMARY:Luigi Caputi (Institute of Informatics of the Czech Academy of Sci
ences)
DTSTART;VALUE=DATE-TIME:20200610T093000Z
DTEND;VALUE=DATE-TIME:20200610T103000Z
DTSTAMP;VALUE=DATE-TIME:20210514T193312Z
UID:PHK-cohomology-seminar/8
DESCRIPTION:Title: Cyclic homology for bornological coarse spaces\nby Luig
i Caputi (Institute of Informatics of the Czech Academy of Sciences) as pa
rt of Prague-Hradec Kralove seminar Cohomology in algebra\, geometry\, phy
sics and statistics\n\n\nAbstract\nBornological coarse spaces are "large s
cale"\ngeneralizations of metric spaces (up to quasi-isometry). Homologica
l\ninvariants of such spaces are given by coarse homology theories\, which
\nare functors from the category of bornological coarse spaces to a stable
\ncocomplete ∞-category\, satisfying additional axioms. Among the main\n
examples of coarse homology theories\, there are coarse versions of\nordin
ary homology\, of topological\nand algebraic K-theory. In the talk we defi
ne G-equivariant coarse\nversions of the classical Hochschild and cyclic h
omologies (of\nalgebras). If k is a field\, the evaluation at the one poin
t space\ninduces equivalences with the classical Hochschild and cyclic hom
ology\nof k. In the equivariant setting\, the G-equivariant coarse Hochsch
ild\n(cyclic) homology of the discrete group G agrees with the classical\n
Hochschild (cyclic) homology of the associated group algebra k[G].\n
LOCATION:https://researchseminars.org/talk/PHK-cohomology-seminar/8/
END:VEVENT
BEGIN:VEVENT
SUMMARY:Vojtech Pravda (Institute of Mathematics of the Czech Academy of S
ciences)
DTSTART;VALUE=DATE-TIME:20200527T093000Z
DTEND;VALUE=DATE-TIME:20200527T103000Z
DTSTAMP;VALUE=DATE-TIME:20210514T193312Z
UID:PHK-cohomology-seminar/9
DESCRIPTION:Title: Universal\, almost universal and related spacetimes\nby
Vojtech Pravda (Institute of Mathematics of the Czech Academy of Sciences
) as part of Prague-Hradec Kralove seminar Cohomology in algebra\, geometr
y\, physics and statistics\n\n\nAbstract\nFor universal spacetimes\, all r
ank-2 tensors constructed from the metric\, Riemann tensors\, and its cova
riant derivatives of arbitrary order are proportional to the metric. Conse
quently\, all vacuum field equations of generalized theories of gravity fo
llowing from Lagrangian constructed from the Riemann tensors and its covar
iant derivatives of arbitrary order are simultaneously satisfied. We will
present necessary and sufficient conditions for several classes of univers
al spacetimes of Lorentzian signature\, some explicit examples of such spa
cetimes\, and discuss certain useful generalizations of the universal prop
erty.\n\nContact an organizer or the speaker for Zoom connection details.
Virtual coffee starts already at 11:00 before the seminar.\n
LOCATION:https://researchseminars.org/talk/PHK-cohomology-seminar/9/
END:VEVENT
BEGIN:VEVENT
SUMMARY:Petr Somberg (Charles University Prague)
DTSTART;VALUE=DATE-TIME:20200603T093000Z
DTEND;VALUE=DATE-TIME:20200603T103000Z
DTSTAMP;VALUE=DATE-TIME:20210514T193312Z
UID:PHK-cohomology-seminar/10
DESCRIPTION:Title: An approach to the representation theory of symmetric grou
ps\nby Petr Somberg (Charles University Prague) as part of Prague-Hrad
ec Kralove seminar Cohomology in algebra\, geometry\, physics and statisti
cs\n\n\nAbstract\nWe give an expository account of Vershik-Okounkov approa
ch to the representation theory of symmetric groups (based on the Gelfand-
Tsetlin basis and the Young-Jucys-Murphy elements.) If time permits\, we e
xplain some geometrical problems which lead to certain conjectural stateme
nts generalizing V-O approach.\n\nContact an organizer or the speaker for
Zoom connection details. Virtual coffee starts already at 11:00 before the
seminar.\n
LOCATION:https://researchseminars.org/talk/PHK-cohomology-seminar/10/
END:VEVENT
BEGIN:VEVENT
SUMMARY:Alexander Zuevsky (Institute of Mathematics of the Czech Academy o
f Sciences)
DTSTART;VALUE=DATE-TIME:20200617T093000Z
DTEND;VALUE=DATE-TIME:20200617T103000Z
DTSTAMP;VALUE=DATE-TIME:20210514T193312Z
UID:PHK-cohomology-seminar/11
DESCRIPTION:Title: Vertex algebra cohomology of foliations on Riemann surface
s\nby Alexander Zuevsky (Institute of Mathematics of the Czech Academy
of Sciences) as part of Prague-Hradec Kralove seminar Cohomology in algeb
ra\, geometry\, physics and statistics\n\n\nAbstract\nIn the transversal b
asis formalism\, we construct a vertex algebra cochain complex\, show its
independence on coordinates and choice of basis\, and define the vertex al
gebra cohomology for a foliation on a smooth complex curve. The first coho
mologies are determined in terms of connections and classes of extensions
of the vertex algebra. We will introduce the cohomological class\, conside
r the main example of $\\operatorname{Re} \\omega=0$ foliation on a Rieman
n surface\, and make a connection with considerations of other codimension
one examples.\n
LOCATION:https://researchseminars.org/talk/PHK-cohomology-seminar/11/
END:VEVENT
BEGIN:VEVENT
SUMMARY:Stephen J. Watson (School of Mathematics & Statistics\, University
of Glasgow)
DTSTART;VALUE=DATE-TIME:20200624T093000Z
DTEND;VALUE=DATE-TIME:20200624T103000Z
DTSTAMP;VALUE=DATE-TIME:20210514T193312Z
UID:PHK-cohomology-seminar/12
DESCRIPTION:Title: Lorentzian Symmetry Predicts Universality Beyond Power Law
s\nby Stephen J. Watson (School of Mathematics & Statistics\, Universi
ty of Glasgow) as part of Prague-Hradec Kralove seminar Cohomology in alge
bra\, geometry\, physics and statistics\n\n\nAbstract\nThe statistical phy
sics governing phase-ordering dynamics following a symmetry breaking first
-order phase transition is an area of active research. The Coarsening/Agei
ng of the ensemble of phase domains\, wherein irreversible annihilation o
r joining of domains yields a growing characteristic domain length\, is a
omniprescent feature whose universal characteristics one would wish to und
erstand. Driven kinetic Ising models and growing nano-faceted crystals are
theoretically important examples of such Coarsening (Ageing) Dynamical Sy
stems (CDS)\, since they additionally break thermodynamic fluctuation-diss
ipation relations.\nPower-laws for the growth in time of the characteristi
c size of domains (e.g.\, lengths) of CDS\, and a concomitant {\\em scale
-invariance} of the associated length distributions\, has so frequently b
een empirically observed that their presence has acquired the status of a
principle\; the so-called Dynamic-Scaling Hypothesis. \nBut the dynamical
symmetries of a given CDS- its Coarsening Group $G$ - may include more tha
n the global spatio-temporal scalings underlying the {\\em Dynamic Scaling
Hypothesis}. \nIn this talk\, I will present a recently developed theoret
ical framework (Ref.[1]) that shows how the symmetry group G of a Coarseni
ng (ageing) Dynamical System (CDS) necessarily yields G-equivariance (cova
riance) of the CDS's universal statistical observables. We exhibit this t
heory for a variety of model systems\, of both thermodynamic and driven ty
pe\, with symmetries that may also be {/em emergent} (Ref. [2\,3]) and/or
{\\em hidden}. We will close with a magical theoretical coarsening law whi
ch reflects Lorentzian and parabolic symmetries!\n\n\nReferences:\n\n[1] L
orentzian symmetry predicts universality beyond scaling laws\,\nSJ Watson\
, EPL 118 (5)\, 56001\, (Aug.2\, 2017)\, Editor's Choice\nhttp://iopscienc
e.iop.org/article/10.1209/0295-5075/118/56001/meta\n\n[2] Emergent parabol
ic scaling of nano-faceting crystal growth\,\nStephen J. Watson\, Proc. R
. Soc. A 471: 20140560 (2015)\nhttp://rspa.royalsocietypublishing.org/cont
ent/471/2174/20140560\n\n[3] Scaling Theory and Morphometrics for a Coarse
ning Multiscale Surface\, via a Principle of Maximal Dissipation\,\nStephe
n J. Watson and Scott A. Norris\, Phys. Rev. Lett. 96\, 176103 (2006)\nhtt
p://journals.aps.org/prl/abstract/10.1103/PhysRevLett.96.176103\n
LOCATION:https://researchseminars.org/talk/PHK-cohomology-seminar/12/
END:VEVENT
BEGIN:VEVENT
SUMMARY:Roman Golovko (Charles University)
DTSTART;VALUE=DATE-TIME:20201007T093000Z
DTEND;VALUE=DATE-TIME:20201007T103000Z
DTSTAMP;VALUE=DATE-TIME:20210514T193312Z
UID:PHK-cohomology-seminar/13
DESCRIPTION:Title: On the different perspective of the Casals-Murphy criterio
n of looseness\nby Roman Golovko (Charles University) as part of Pragu
e-Hradec Kralove seminar Cohomology in algebra\, geometry\, physics and st
atistics\n\n\nAbstract\nWe show that inside a trivial open book $\\partial
(W\\times D^2)$ with page being a Weinstein manifold $(W\, d\\theta)$\, a
ny Legendrian which is contained entirely inside a page and which intersec
ts some cocore disc transversely in a single point is loose. This leads to
the alternative proof of Casals-Murphy criterion of looseness. This is jo
int work with Georgios Dimitroglou Rizell.\n
LOCATION:https://researchseminars.org/talk/PHK-cohomology-seminar/13/
END:VEVENT
BEGIN:VEVENT
SUMMARY:Francesco Cattafi (KU Leuven)
DTSTART;VALUE=DATE-TIME:20201014T093000Z
DTEND;VALUE=DATE-TIME:20201014T103000Z
DTSTAMP;VALUE=DATE-TIME:20210514T193312Z
UID:PHK-cohomology-seminar/14
DESCRIPTION:Title: Formal integrability of geometric structures\nby Franc
esco Cattafi (KU Leuven) as part of Prague-Hradec Kralove seminar Cohomolo
gy in algebra\, geometry\, physics and statistics\n\n\nAbstract\nA Γ-stru
cture on a manifold is a maximal atlas whose changes of coordinates take v
alues in a Lie pseudogroup Γ. Various geometric structures (e.g. symplect
ic\, complex and contact structures) fit in this framework\, but there is
no general definition of almost Γ-structure (e.g. almost symplectic\, alm
ost complex and almost contact structures) in terms of Γ. In this talk we
are going to fill this gap by introducing the general definition of an al
most Γ-structure\, and presenting a characterisation of its formal integr
ability. This will be obtained by introducing the concept of principal Pfa
ffian bundle. We will draw inspiration from the theory of PDEs\, from Pois
son geometry\, as well as from similar results in the theory of G-structur
es\, which we recover as particular cases. This is joint work with Marius
Crainic.\n
LOCATION:https://researchseminars.org/talk/PHK-cohomology-seminar/14/
END:VEVENT
BEGIN:VEVENT
SUMMARY:Domenico Fiorenza (Università di Roma “La Sapienza”)
DTSTART;VALUE=DATE-TIME:20201021T093000Z
DTEND;VALUE=DATE-TIME:20201021T103000Z
DTSTAMP;VALUE=DATE-TIME:20210514T193312Z
UID:PHK-cohomology-seminar/15
DESCRIPTION:Title: Formally integrable complex structures on higher dimension
al knot spaces\nby Domenico Fiorenza (Università di Roma “La Sapien
za”) as part of Prague-Hradec Kralove seminar Cohomology in algebra\, ge
ometry\, physics and statistics\n\n\nAbstract\nBy the Brown-Gray’s class
ification\, there are four classes of Riemannian manifolds $M$ with parall
el $r$-fold vector cross products: $r = 1$ and $M$ a Kähler manifold\, $r
= \\dim M − 1$\, $r = 2$ and $M$ a $G_2$-manifold\, $r = 3$ and $M$ a $
Spin(7)$-manifold. For the first three classes it has been proven by Bryli
nski\, LeBrun\, and Verbitsky\, via ad hoc arguments for each of these cla
sses\, that the higher knot spaces for $M$ carry a natural formally Kähle
r structure. More recently\, Henrich provided a new proof for the $r = \\d
im M − 1$ case. In a recent work with Hông Vân Lê (arXiv:1912.05175)\
, we show how a variant of Henrich's construction can be used to provide a
uniform proof for all four classes. In particular\, this provides a proof
for the previously unknown case of $Spin(7)$-manifolds.\n
LOCATION:https://researchseminars.org/talk/PHK-cohomology-seminar/15/
END:VEVENT
BEGIN:VEVENT
SUMMARY:Zoran Skoda (University of Zadar and University of Hradec Kralove)
DTSTART;VALUE=DATE-TIME:20201104T103000Z
DTEND;VALUE=DATE-TIME:20201104T113000Z
DTSTAMP;VALUE=DATE-TIME:20210514T193312Z
UID:PHK-cohomology-seminar/17
DESCRIPTION:Title: Gluing bundles over noncommutative flag varieties\nby
Zoran Skoda (University of Zadar and University of Hradec Kralove) as part
of Prague-Hradec Kralove seminar Cohomology in algebra\, geometry\, physi
cs and statistics\n\n\nAbstract\nLocalization functors may be used to defi
ne local covers in some\nexamples from noncommutative geometry. In an earl
ier work\, I have used\nthis technique to treat\ngluing of bundles over qu
antum flag varieties with applications to quantum group\ncoherent states a
nd representation theory. A non-flat version of this technique\nis under d
evelopment. A basic series of examples is what I call\nuniversal noncommut
ative flag varieties (including Grassmannians)\,\nwhere no "quantum" relat
ions are imposed.\nVarious classical and quantum flag varieties appear as
subvarieties. I will\npresent these the rationale behind these examples an
d of gluing technique\nfor certain special covers. Main aim is to derive e
xplicit cocycle describing\ncertain tautological bundle over a universal n
oncommutative Grassmannian\nleading to noncommutative double ratios studie
d recently\nby Retakh\, Rubtsov and Sharygin.\n
LOCATION:https://researchseminars.org/talk/PHK-cohomology-seminar/17/
END:VEVENT
BEGIN:VEVENT
SUMMARY:Tat Dat To (UPMC Paris VI)
DTSTART;VALUE=DATE-TIME:20201118T103000Z
DTEND;VALUE=DATE-TIME:20201118T113000Z
DTSTAMP;VALUE=DATE-TIME:20210514T193312Z
UID:PHK-cohomology-seminar/18
DESCRIPTION:Title: Convergence of the Kähler-Ricci flow on varieties of gene
ral type\nby Tat Dat To (UPMC Paris VI) as part of Prague-Hradec Kralo
ve seminar Cohomology in algebra\, geometry\, physics and statistics\n\n\n
Abstract\nWe study the Kähler-Ricci flow on varieties of general type. We
show that the normalized Kähler-Ricci flow exists at all times in the se
nse of viscosity\, is continuous in an open Zariski set and converges to t
he singular Kähler-Einstein metric. This gives an answer to a question of
Feldman-Ilmanen-Knopf.\n
LOCATION:https://researchseminars.org/talk/PHK-cohomology-seminar/18/
END:VEVENT
BEGIN:VEVENT
SUMMARY:Alfonso Tortorella (KU Leuven)
DTSTART;VALUE=DATE-TIME:20210106T103000Z
DTEND;VALUE=DATE-TIME:20210106T113000Z
DTSTAMP;VALUE=DATE-TIME:20210514T193312Z
UID:PHK-cohomology-seminar/19
DESCRIPTION:Title: Deformations of symplectic foliations\nby Alfonso Tort
orella (KU Leuven) as part of Prague-Hradec Kralove seminar Cohomology in
algebra\, geometry\, physics and statistics\n\n\nAbstract\nIn this talk\,
based on joint work with Stephane Geudens and Marco Zambon\, I develop the
deformation theory of symplectic foliations\, i.e. regular foliations equ
ipped with a leaf-wise symplectic form. The main result is that each sympl
ectic foliation is attached with an $L_\\infty$ algebra controlling its de
formation problem. Indeed\, we establish a one-to-one correspondence betwe
en the small deformations of a given symplectic foliation and the MC eleme
nts of the associated $L_\\infty$ algebra. Further\, we prove that\, under
this one-to-one correspondence\, the equivalence by isotopies of symplect
ic foliations agrees with the gauge equivalence of MC elements. Finally\,
we show that the infinitesimal deformations of symplectic foliations can b
e obstructed.\n
LOCATION:https://researchseminars.org/talk/PHK-cohomology-seminar/19/
END:VEVENT
BEGIN:VEVENT
SUMMARY:Mahir Can (Tulane University)
DTSTART;VALUE=DATE-TIME:20201209T104500Z
DTEND;VALUE=DATE-TIME:20201209T114500Z
DTSTAMP;VALUE=DATE-TIME:20210514T193312Z
UID:PHK-cohomology-seminar/20
DESCRIPTION:Title: Quotients of Classical Symmetric Spaces\nby Mahir Can
(Tulane University) as part of Prague-Hradec Kralove seminar Cohomology in
algebra\, geometry\, physics and statistics\n\n\nAbstract\nIn this talk w
e will discuss some new and old results regarding the wonderful embeddings
of classical complex symmetric spaces. More precisely\, we will introduce
certain (non-arithmetic) quotients of classical symmetric spaces. Then w
e will describe their combinatorial and geometric properties in relation w
ith their wonderful embeddings. Our running example will be on the variety
of nondegenerate quadrics.\n\nNB: Start time 15 later than usual. Virtual
coffee starts on Zoom already at 11:30 before the seminar.\n
LOCATION:https://researchseminars.org/talk/PHK-cohomology-seminar/20/
END:VEVENT
BEGIN:VEVENT
SUMMARY:Alexander Alexandrov (IBS\, Center for Geometry and Physics\, Poha
ng)
DTSTART;VALUE=DATE-TIME:20201202T103000Z
DTEND;VALUE=DATE-TIME:20201202T113000Z
DTSTAMP;VALUE=DATE-TIME:20210514T193312Z
UID:PHK-cohomology-seminar/21
DESCRIPTION:Title: KP integrability of triple Hodge integrals\nby Alexand
er Alexandrov (IBS\, Center for Geometry and Physics\, Pohang) as part of
Prague-Hradec Kralove seminar Cohomology in algebra\, geometry\, physics a
nd statistics\n\n\nAbstract\nIn my talk I will describe a relation between
the Givental group of rank one and Heisenberg-Virasoro symmetry group of
the KP integrable hierarchy. In particular I will show that only a two-par
ameter family of the Givental operators can be identified with elements of
the Heisenberg-Virasoro symmetry group. This family describes triple Hodg
e integrals satisfying the Calabi-Yau condition. Using identification of t
he elements of two groups it is possible to prove that the generating func
tion of triple Hodge integrals satisfying the Calabi-Yau condition and its
$\\Theta$-version are tau-functions of the KP hierarchy. This generalizes
the result of Kazarian on KP integrability in case of linear Hodge integr
als. I will also describe the relation of this family of tau-functions wit
h the generalized Kontsevich matrix model. My talk is based on two papers\
, arXiv:2009.01615 and arXiv:2009.10961.\n
LOCATION:https://researchseminars.org/talk/PHK-cohomology-seminar/21/
END:VEVENT
BEGIN:VEVENT
SUMMARY:Pavel Hajek (University Hamburg)
DTSTART;VALUE=DATE-TIME:20201216T103000Z
DTEND;VALUE=DATE-TIME:20201216T113000Z
DTSTAMP;VALUE=DATE-TIME:20210514T193312Z
UID:PHK-cohomology-seminar/22
DESCRIPTION:Title: Chain models of string topology coming from symplectic geo
metry\nby Pavel Hajek (University Hamburg) as part of Prague-Hradec Kr
alove seminar Cohomology in algebra\, geometry\, physics and statistics\n\
n\nAbstract\nI will recall loop spaces\, natural structures on their homol
ogy and the relation to symplectic geometry of the cotangent bundle (speci
fically to chain level structures defined by counting holomorphic curves).
I will then zoom in on the equivariant case and a chain model based on de
Rham forms and Chern-Simons theory. I will show some computations and exp
lain how this structure appears in various contexts.\n
LOCATION:https://researchseminars.org/talk/PHK-cohomology-seminar/22/
END:VEVENT
BEGIN:VEVENT
SUMMARY:Alexander Schenkel (University of Nottingham)
DTSTART;VALUE=DATE-TIME:20210113T103000Z
DTEND;VALUE=DATE-TIME:20210113T113000Z
DTSTAMP;VALUE=DATE-TIME:20210514T193312Z
UID:PHK-cohomology-seminar/23
DESCRIPTION:Title: Boundary conditions and edge modes in gauge theories\n
by Alexander Schenkel (University of Nottingham) as part of Prague-Hradec
Kralove seminar Cohomology in algebra\, geometry\, physics and statistics\
n\n\nAbstract\nThe fields of a classical gauge theory form a smooth groupo
id (aka stack) with morphisms given by gauge transformations. From this pe
rspective\, the concept of "equality" of two gauge fields $A$ and $A'$ is
not a property but rather additional data given by the choice of a gauge t
ransformation $A \\to A'$ which witnesses that $A$ and $A'$ are "the same"
. In this talk\, I will explain how this higher-categorical point of view
is useful to study gauge theories on manifolds with boundaries and defects
. In particular\, I will show that the additional data witnessing boundary
conditions are precisely the famous edge modes from physics. As examples\
, I will discuss 3d Abelian Chern-Simons theory on manifolds with boundary
\, which is physically describing the quantum Hall system\, and also the 4
d holomorphic Chern-Simons theory of Costello and Yamazaki where the edge
modes on surface defects determine 2d integrable field theories.\n\nThis t
alk is based on arXiv:1907.1065
1 and arXiv:2008.01829.
\n
LOCATION:https://researchseminars.org/talk/PHK-cohomology-seminar/23/
END:VEVENT
BEGIN:VEVENT
SUMMARY:Wilderich Tuschmann (Karlsruhe Institute of Technology)
DTSTART;VALUE=DATE-TIME:20210224T103000Z
DTEND;VALUE=DATE-TIME:20210224T113000Z
DTSTAMP;VALUE=DATE-TIME:20210514T193312Z
UID:PHK-cohomology-seminar/24
DESCRIPTION:Title: (MODULI) SPACES OF RIEMANNIAN METRICS\nby Wilderich Tu
schmann (Karlsruhe Institute of Technology) as part of Prague-Hradec Kralo
ve seminar Cohomology in algebra\, geometry\, physics and statistics\n\n\n
Abstract\nConsider a smooth manifold with a Riemannian metric satisfying s
ome sort of curvature constraint like\, for example\, positive scalar curv
ature\, non-negative Ricci or negative sectional curvature\, being Einstei
n\, Kähler\, Sasaki\, etc. A natural question to study is then what the s
pace of all such metrics does look like. Moreover\, one can also pose this
question for corresponding moduli spaces of metrics\, i.e.\, quotients of
the former by (suitable subgroups of) the diffeomorphism group of the man
ifold\, acting by pulling back metrics.\n\nThese spaces are customarily eq
uipped with the topology of smooth convergence on compact subsets and the
quotient topology\, respectively\, and their topological properties then p
rovide the right means to measure 'how many' different metrics and geometr
ies the given manifold actually does exhibit\; but one can topologize and
view those also in very different manners.\n\nIn my talk\, I will report o
n some general results and open questions about spaces and moduli spaces o
f metrics with a focus on non-negative Ricci or sectional curvature as wel
l as other lower curvature bounds on closed and open manifolds\, and\, in
particular\, also discuss broader non-traditional approaches from metric g
eometry and analysis to these objects and topics.\n
LOCATION:https://researchseminars.org/talk/PHK-cohomology-seminar/24/
END:VEVENT
BEGIN:VEVENT
SUMMARY:Jan Gregorovic (University Hradec Kralove)
DTSTART;VALUE=DATE-TIME:20210317T103000Z
DTEND;VALUE=DATE-TIME:20210317T113000Z
DTSTAMP;VALUE=DATE-TIME:20210514T193312Z
UID:PHK-cohomology-seminar/26
DESCRIPTION:Title: First BGG operators on homogeneous parabolic geometries\nby Jan Gregorovic (University Hradec Kralove) as part of Prague-Hradec
Kralove seminar Cohomology in algebra\, geometry\, physics and statistics\
n\n\nAbstract\nI will briefly review the theory of BGG operators on parabo
lic geometries and show\, how to construct and find (normal) solutions of
first BGG operators on homogeneous parabolic geometries\, in detail. In pa
rticular\, such a solution can be obtained by purely algebraic computation
s and using representation theory. This simplifies a construction of examp
les of BGG operators on nonflat homogeneous parabolic geometries admitting
nontrivial solutions\, which otherwise appear only rarely in the literatu
re. I will present one of such examples in CR geometry with nontrivial sol
utions for subriemannian metrizability among others.\n
LOCATION:https://researchseminars.org/talk/PHK-cohomology-seminar/26/
END:VEVENT
BEGIN:VEVENT
SUMMARY:Alexander Zuevsky (Institute of Mathematics of the Czech Academy o
f Sciences)
DTSTART;VALUE=DATE-TIME:20210324T103000Z
DTEND;VALUE=DATE-TIME:20210324T113000Z
DTSTAMP;VALUE=DATE-TIME:20210514T193312Z
UID:PHK-cohomology-seminar/27
DESCRIPTION:Title: Reduction cohomology on complex manifolds\nby Alexande
r Zuevsky (Institute of Mathematics of the Czech Academy of Sciences) as p
art of Prague-Hradec Kralove seminar Cohomology in algebra\, geometry\, ph
ysics and statistics\n\n\nAbstract\nDeveloping ideas of classical work of
Feigin\, and its development by Wagemann\,\nand proceed with a generalizat
ion of ideas of above works. We describe the\nnotion of a cohomology theor
y of infinite formal series with non-commutative\nmodes and localization o
f variables on Riemann surfaces\, constructed via\ncharacteristic function
s reduction formulas. We will mention algebraic\nconditions leading to cha
in property of complexes for characteristic functions\,\nand represent fur
ther restrictions on modular form coefficients in reduction formulas.\nRel
ations of reduction cohomologies to analytic continuations of Knizhnik-Zam
olodchikov\nequations as well as an example of application of Bott-Segal t
heorem will also be mentioned.\nJacobi forms case example will be consider
ed.\n
LOCATION:https://researchseminars.org/talk/PHK-cohomology-seminar/27/
END:VEVENT
BEGIN:VEVENT
SUMMARY:Georgy Sharygin (Moscow State University Lomonosov)
DTSTART;VALUE=DATE-TIME:20210331T093000Z
DTEND;VALUE=DATE-TIME:20210331T103000Z
DTSTAMP;VALUE=DATE-TIME:20210514T193312Z
UID:PHK-cohomology-seminar/28
DESCRIPTION:Title: Around the noncommutative cross ratio\nby Georgy Shary
gin (Moscow State University Lomonosov) as part of Prague-Hradec Kralove s
eminar Cohomology in algebra\, geometry\, physics and statistics\n\n\nAbst
ract\nThe cross-ratio of four points on a projective line is one of the mo
st important projective invariants\, which finds most unexpected applicati
ons throughout Mathematics from Geometry and Topology to the Integrable sy
stems theory. I will tell\, how one can widen the domain on which this inv
ariant is defined so as to allow one consider "projective lines" over nonc
ommutative field. It turns out that there is an approach\, which allows on
e find such generalization so that most of important properties of the cro
ss ratio are preserved. Study of this new object is an interesting new pro
blem. Based on joint work with V.Retakh and V.Rubtsov.\n
LOCATION:https://researchseminars.org/talk/PHK-cohomology-seminar/28/
END:VEVENT
BEGIN:VEVENT
SUMMARY:Tobias Fritz (University of Innsbruck\, Austria)
DTSTART;VALUE=DATE-TIME:20210407T093000Z
DTEND;VALUE=DATE-TIME:20210407T103000Z
DTSTAMP;VALUE=DATE-TIME:20210514T193312Z
UID:PHK-cohomology-seminar/29
DESCRIPTION:Title: The de Finetti theorem in categorical probability\nby
Tobias Fritz (University of Innsbruck\, Austria) as part of Prague-Hradec
Kralove seminar Cohomology in algebra\, geometry\, physics and statistics\
n\n\nAbstract\nWhile probability theory is traditionally based on measure
theory and Kolmogorov's axioms as a foundation\, the recently proposed fo
rmalism of Markov categories constitutes a potential alternative approach
in which a (modest) number of classical theorems of probability and statis
tics have already been reproduced and generalized. In this talk\, I will i
ntroduce this approach and illustrate its utility by providing a statement
and proof of the classical de Finetti theorem in entirely abstract catego
rical terms without measure theory. Based on joint work with Tomáš Gonda
\, Paolo Perrone and Eigil Rischel.\n
LOCATION:https://researchseminars.org/talk/PHK-cohomology-seminar/29/
END:VEVENT
BEGIN:VEVENT
SUMMARY:Marco Benini (University of Genoa)
DTSTART;VALUE=DATE-TIME:20210414T093000Z
DTEND;VALUE=DATE-TIME:20210414T103000Z
DTSTAMP;VALUE=DATE-TIME:20210514T193312Z
UID:PHK-cohomology-seminar/30
DESCRIPTION:Title: Smooth 1-dimensional algebraic quantum field theories\
nby Marco Benini (University of Genoa) as part of Prague-Hradec Kralove se
minar Cohomology in algebra\, geometry\, physics and statistics\n\n\nAbstr
act\nAlgebraic quantum field theory (AQFT) axiomatizes quantum field theor
ies (QFTs) as functors A assigning to each spacetime M an algebra A(M)\, i
nterpreted as the algebra of observables of a QFT over the spacetime M. To
support this physical interpretation\, certain physical axioms are impose
d on the functors A. None of these axioms\, however\, addresses the follow
ing physically desirable feature: given a "smooth" family M_s of spacetime
s\, the family of algebras of observables A(M_s) should depend "smoothly"
on the parameter s in an appropriate sense. (Speaking even more loosely\,
a "mild variation" of the geometry of spacetime should determine a "mild v
ariation" of the algebra of observables.) The purpose of this talk is to p
resent a framework\, based on stacks of categories\, that allows for the s
mooth refinement of AQFTs mentioned above. To illustrate this framework\,
we will explore in detail the case of smooth 1-dimensional AQFTs. (Based o
n arXiv:2010.13808 [math-ph].)\n
LOCATION:https://researchseminars.org/talk/PHK-cohomology-seminar/30/
END:VEVENT
BEGIN:VEVENT
SUMMARY:Michael Reiterer (Berner Fachhochschule\, Switzerland)
DTSTART;VALUE=DATE-TIME:20210421T093000Z
DTEND;VALUE=DATE-TIME:20210421T103000Z
DTSTAMP;VALUE=DATE-TIME:20210514T193312Z
UID:PHK-cohomology-seminar/31
DESCRIPTION:Title: Filtered expansions in general relativity\nby Michael
Reiterer (Berner Fachhochschule\, Switzerland) as part of Prague-Hradec Kr
alove seminar Cohomology in algebra\, geometry\, physics and statistics\n\
n\nAbstract\nI will review the BKL (Belinskii-Khalatnikov-Lifshitz) propos
al for singularities in general relativity\, for spatially homogeneous and
spatially inhomogeneous spacetimes. Then I will discuss a construction of
formal power series solutions\, for one BKL bounce\, which is a building
block for the BKL proposal. I will in particular highlight the algebraic t
ools that we use\, namely Maurer-Cartan perturbation theory and a filtrati
on that organizes the calculations. Joint with Eugene Trubowitz\, see arXiv:1905.09026 and arXiv:2005.03390.\n
LOCATION:https://researchseminars.org/talk/PHK-cohomology-seminar/31/
END:VEVENT
BEGIN:VEVENT
SUMMARY:Jérémie Joudioux (Albert Einstein Institute\, Golm)
DTSTART;VALUE=DATE-TIME:20210428T093000Z
DTEND;VALUE=DATE-TIME:20210428T103000Z
DTSTAMP;VALUE=DATE-TIME:20210514T193312Z
UID:PHK-cohomology-seminar/32
DESCRIPTION:Title: Hertz potentials and the decay of higher-spin fields\n
by Jérémie Joudioux (Albert Einstein Institute\, Golm) as part of Prague
-Hradec Kralove seminar Cohomology in algebra\, geometry\, physics and sta
tistics\n\n\nAbstract\nThe purpose of the talk is to illustrate how differ
ential complexes can be used in relativity. Electromagnetism and linearize
d gravity (more generally higher-spin fields) are governed by hyperbolic s
ystems of partial differential equations. Solutions to these systems can b
e generated by the mean of potentials (here\, Hertz potentials) satisfying
a wave equation. It is possible to recast the problem of representing a s
olution to these higher-spin fields by Hertz potentials in the context of
the initial value problem. Initial data for higher-spin fields satisfy con
straint equations\, and cannot be chosen freely. The integrability conditi
ons for these constraints are described by elliptic complexes. These ellip
tic complexes also happen to be those describing the relation between init
ial data for higher-spin fields and those for their Hertz potentials. The
problem of describing the asymptotic behavior of generic solutions to high
er-spin fields can then be completely deduced from the asymptotic behavior
of solutions to the scalar wave equations on flat spacetime.\n
LOCATION:https://researchseminars.org/talk/PHK-cohomology-seminar/32/
END:VEVENT
BEGIN:VEVENT
SUMMARY:Hong Van Le (Institute of Mathematics of the Czech Academy of Scie
nces)
DTSTART;VALUE=DATE-TIME:20210310T103000Z
DTEND;VALUE=DATE-TIME:20210310T113000Z
DTSTAMP;VALUE=DATE-TIME:20210514T193312Z
UID:PHK-cohomology-seminar/33
DESCRIPTION:Title: Diffeological statistical models and diffeological Hausdor
ff measures\nby Hong Van Le (Institute of Mathematics of the Czech Aca
demy of Sciences) as part of Prague-Hradec Kralove seminar Cohomology in a
lgebra\, geometry\, physics and statistics\n\n\nAbstract\nIn my talk I sh
all first explain the concept of diffeological spaces introduced
by Souriau. Then I shall explain how to use this concept to en
dow natural smooth structures on subsets of probability measures on an
arbitrary measurable space. I shall discuss the concept of the d
iffeological Fisher metric and the resulting notion of the diffeologica
l Hausdorff measure that are categorically natural\, and meaningful
for statistical estimations used in statistical physics and data anal
ysis.\n \n My talk is based on my paper and my joi
nt paper with Alexei Tuzhilin.\n
LOCATION:https://researchseminars.org/talk/PHK-cohomology-seminar/33/
END:VEVENT
BEGIN:VEVENT
SUMMARY:Jean-Pierre Francoise (Sorbonne Université\, Paris)
DTSTART;VALUE=DATE-TIME:20210505T093000Z
DTEND;VALUE=DATE-TIME:20210505T103000Z
DTSTAMP;VALUE=DATE-TIME:20210514T193312Z
UID:PHK-cohomology-seminar/34
DESCRIPTION:Title: Information Geometry and Hamiltonian Systems on Lie Groups
\nby Jean-Pierre Francoise (Sorbonne Université\, Paris) as part of P
rague-Hradec Kralove seminar Cohomology in algebra\, geometry\, physics an
d statistics\n\n\nAbstract\nThe link between Hamiltonian Integrable System
s and Information Geometry was discovered by Amari\, Fujiwara and Nakamura
(90s). In particular\, Nakamura succeeded to define the tau-function for
the open Toda Lattice by using Information Geometry .\n\nWe propose a more
general study of Hamiltonian Systems related with the Information Geometr
y on Lie groups.\n\nFisher-Rao semi-definite metric is naturally induced a
s a left-invariant semi-definite metric on the Lie group\, which is regard
ed as the parameter space of the family of probability density functions.
For a specific choice of family of probability density functions on compac
t semi-simple Lie group\, the equation for the geodesic flow is derived th
rough the Euler-Poincaré reduction. Certain perspectives are mentioned ab
out the geodesics equation on the basis of its similarity with the Bloch-B
rockett –Ratiu double bracket equation and with the Euler-Arnol'd equati
on for a generalized free rigid body dynamics.\n\nThis is a joint work wit
h Daisuke Tarama (Ritsumeikan University).\n
LOCATION:https://researchseminars.org/talk/PHK-cohomology-seminar/34/
END:VEVENT
BEGIN:VEVENT
SUMMARY:Andrea Santi (UiT The Artic University of Norway)
DTSTART;VALUE=DATE-TIME:20210512T093000Z
DTEND;VALUE=DATE-TIME:20210512T103000Z
DTSTAMP;VALUE=DATE-TIME:20210514T193312Z
UID:PHK-cohomology-seminar/35
DESCRIPTION:Title: $G(3)$ supergeometry and a supersymmetric extension of the
Hilbert-Cartan equation\nby Andrea Santi (UiT The Artic University of
Norway) as part of Prague-Hradec Kralove seminar Cohomology in algebra\,
geometry\, physics and statistics\n\n\nAbstract\nI will report on the real
ization of the simple Lie superalgebra $G(3)$ as supersymmetry of various
geometric structures – most importantly super-versions of the Hilbert–
Cartan equation and Cartan’s involutive PDE system that exhibit $G(2)$ s
ymmetry – and compute\, via Spencer cohomology groups\, the Tanaka-Weisf
eiler prolongation of the negatively graded Lie superalgebras associated w
ith two particular choices of parabolics. I will then discuss non-holonomi
c superdistributions with growth vector $(2|4\, 1|2\, 2|0)$ obtained as su
per-deformations of rank 2 distributions in a 5-dimensional space\, and sh
ow that the second Spencer cohomology group gives a binary quadric\, there
by providing a “square-root” of Cartan’s classical binary quartic in
variant for $(2\, 3\, 5)$-distributions. If time allows\, I will outline a
n extension of Tanaka’s geometric prolongation scheme to the case of sup
ermanifolds. This is a joint work with B. Kruglikov and D. The.\n
LOCATION:https://researchseminars.org/talk/PHK-cohomology-seminar/35/
END:VEVENT
BEGIN:VEVENT
SUMMARY:Kotaro Kawai (Gakushuin University\, Tokyo)
DTSTART;VALUE=DATE-TIME:20210519T093000Z
DTEND;VALUE=DATE-TIME:20210519T103000Z
DTSTAMP;VALUE=DATE-TIME:20210514T193312Z
UID:PHK-cohomology-seminar/36
DESCRIPTION:Title: Deformed Donaldson-Thomas connections\nby Kotaro Kawai
(Gakushuin University\, Tokyo) as part of Prague-Hradec Kralove seminar C
ohomology in algebra\, geometry\, physics and statistics\n\n\nAbstract\nTh
e deformed Donaldson-Thomas (dDT) connection is a Hermitian connection of
a Hermitian line bundle over a $G_2$-manifold satisfying certain nonlinear
PDEs. This is considered to be the mirror of a calibrated (associative) s
ubmanifold via mirror symmetry. As the name indicates\, the dDT connection
can also be considered as an analogue of the Donaldson-Thomas connection
($G_2$-instanton).\n\nIn this talk\, after reviewing these backgrounds\, I
will show that dDT connections indeed have properties similar to associat
ive submanifolds and $G_2$-instantons. I would also like to present some r
elated problems. This is joint work with Hikaru Yamamoto.\n
LOCATION:https://researchseminars.org/talk/PHK-cohomology-seminar/36/
END:VEVENT
BEGIN:VEVENT
SUMMARY:Petr Zima (Charles University)
DTSTART;VALUE=DATE-TIME:20210526T093000Z
DTEND;VALUE=DATE-TIME:20210526T103000Z
DTSTAMP;VALUE=DATE-TIME:20210514T193312Z
UID:PHK-cohomology-seminar/37
DESCRIPTION:Title: Symmetry\, holonomy and special geometries\nby Petr Zi
ma (Charles University) as part of Prague-Hradec Kralove seminar Cohomolog
y in algebra\, geometry\, physics and statistics\n\nAbstract: TBA\n
LOCATION:https://researchseminars.org/talk/PHK-cohomology-seminar/37/
END:VEVENT
BEGIN:VEVENT
SUMMARY:Ioannis Chrysikos (University Hradec Kralove)
DTSTART;VALUE=DATE-TIME:20211006T093000Z
DTEND;VALUE=DATE-TIME:20211006T103000Z
DTSTAMP;VALUE=DATE-TIME:20210514T193312Z
UID:PHK-cohomology-seminar/38
DESCRIPTION:by Ioannis Chrysikos (University Hradec Kralove) as part of Pr
ague-Hradec Kralove seminar Cohomology in algebra\, geometry\, physics and
statistics\n\nAbstract: TBA\n
LOCATION:https://researchseminars.org/talk/PHK-cohomology-seminar/38/
END:VEVENT
END:VCALENDAR