BEGIN:VCALENDAR
VERSION:2.0
PRODID:researchseminars.org
CALSCALE:GREGORIAN
X-WR-CALNAME:researchseminars.org
BEGIN:VEVENT
SUMMARY:Ergün Yalçın (Bilkent University)
DTSTART;VALUE=DATE-TIME:20201009T100000Z
DTEND;VALUE=DATE-TIME:20201009T110000Z
DTSTAMP;VALUE=DATE-TIME:20210419T102149Z
UID:7tepemathseminars/1
DESCRIPTION:Title: The Dade Group of a Finite Group and Dimension Functions\nby
Ergün Yalçın (Bilkent University) as part of Yeditepe Mathematics Semi
nars\n\n\nAbstract\nLet $G$ be a finite group and $k$ an algebraically clo
sed field of characteristic\n$p > 0$. We define the notion of a Dade $kG$-
module as a generalization of endopermutation modules for $p$-groups. We s
how that under a suitable equivalence relation\, the set of equivalence cl
asses of Dade $kG$-modules forms a group under tensor product\, and the gr
oup obtained this way is isomorphic to the Dade group $D(G)$ defined by La
ssueur $[2]$.\n\nWe also consider the subgroup $D^\\Omega (G)$ of $D(G)$
generated by relative syzygies\n$\\Omega X$\, where $X$ is a finite $G$-se
t. Let $C(G\; p)$ denote the group of superclass\nfunctions defined on the
p-subgroups of G. There are natural generators $\\omega_X$\nof $C(G\; p)$
. We prove that there is a well-defined group homomorphism $\\psi_G :\nC(G
\; p) \\to D^\\Omega (G)$ that sends $\\omega_X$ to $ \\Omega_X$.\n\nThe
main theorem is the verification that the subgroup of $C(G\; p)$ consistin
g\nof the dimension functions of $k$-orientable real representations of $G
$ lies in the\nkernel of $\\psi_G$. In the proof we consider Moore $G$-spa
ces which are the equivariant\nversions of spaces which have nonzero reduc
ed homology in only one dimension.\n\nThis talk is about a theorem in modu
lar representation theory whose proof is\ntopological using equivariant ho
motopy theory and homological algebra over\norbit category. I will give al
l necessary definitions to make it possible to follow\nthe talk and provid
e examples to motivate the theorems.\n\nThis is a joint work with Matthew
Gelvin $[1]$.\n\n$\\mathbf{References}$\n\n$[1]$ M. Gelvin and E. Yalçın
\, Dade Groups for Finite Groups and Dimension Functions\, preprint\, 2020
(arXiv:2007.05322v2).\n\n$[2]$ C. Lassueur\, The Dade group of a finite g
roup\, J. Pure Appl. Algebra\, 217 (2013)\,\n97-113.\n
LOCATION:https://researchseminars.org/talk/7tepemathseminars/1/
END:VEVENT
BEGIN:VEVENT
SUMMARY:Aslı Güçlükan İlhan (Dokuz Eylül University)
DTSTART;VALUE=DATE-TIME:20201016T100000Z
DTEND;VALUE=DATE-TIME:20201016T110000Z
DTSTAMP;VALUE=DATE-TIME:20210419T102149Z
UID:7tepemathseminars/2
DESCRIPTION:Title: $\\omega$-Weighted Digraphs and Local Complementations\nby A
slı Güçlükan İlhan (Dokuz Eylül University) as part of Yeditepe Math
ematics Seminars\n\n\nAbstract\nIn this talk\, we introduce $\\omega$-weig
hted digraphs for a given dimension function $\\omega$. We generalize the
notion of a local complementation to $\\omega$-weighted digraphs. Then we
establish a bijection between isomorphism classes of $\\omega$-weighted di
graphs up to local complementations and the isomorphism classes of weakly
$\\mathbb{Z}_2^n$-equivariant small covers over a product of simplices.\n
LOCATION:https://researchseminars.org/talk/7tepemathseminars/2/
END:VEVENT
BEGIN:VEVENT
SUMMARY:Kazım İlhan İkeda (Boğaziçi University)
DTSTART;VALUE=DATE-TIME:20201030T100000Z
DTEND;VALUE=DATE-TIME:20201030T110000Z
DTSTAMP;VALUE=DATE-TIME:20210419T102149Z
UID:7tepemathseminars/3
DESCRIPTION:Title: On the Langlands reciprocity and functoriality principles\nb
y Kazım İlhan İkeda (Boğaziçi University) as part of Yeditepe Mathema
tics Seminars\n\nAbstract: TBA\n
LOCATION:https://researchseminars.org/talk/7tepemathseminars/3/
END:VEVENT
BEGIN:VEVENT
SUMMARY:Atabey Kaygun (İstanbul Technical University)
DTSTART;VALUE=DATE-TIME:20201106T140000Z
DTEND;VALUE=DATE-TIME:20201106T150000Z
DTSTAMP;VALUE=DATE-TIME:20210419T102149Z
UID:7tepemathseminars/4
DESCRIPTION:Title: Generalized Weyl Algebras\, Birational Equivalences and Gelfand
Kirillov Conjecture\nby Atabey Kaygun (İstanbul Technical University)
as part of Yeditepe Mathematics Seminars\n\n\nAbstract\nRank $1$ generali
zed Weyl algebras (GWAs) form an interesting class of algebras that includ
e (quantum) enveloping algebra of $sl(2)$ and some interesting quantum gro
ups of rank $1$ and $2$. In this talk I will define GWAs and then explain
how these examples fit into the framework of GWAs. Birational equivalence\
, on the other hand\, is a tool (commutative) algebraic geometers use quit
e extensively. Interestingly\, GWAs are birationally equivalent to a smash
product with a torus of rank $1$. Time permitting\, I will talk about how
all of these relate to Gelfand-Kirillov conjecture.\n
LOCATION:https://researchseminars.org/talk/7tepemathseminars/4/
END:VEVENT
BEGIN:VEVENT
SUMMARY:Özgün Ünlü (Bilkent University)
DTSTART;VALUE=DATE-TIME:20210108T100000Z
DTEND;VALUE=DATE-TIME:20210108T110000Z
DTSTAMP;VALUE=DATE-TIME:20210419T102149Z
UID:7tepemathseminars/5
DESCRIPTION:Title: Free Group Actions on Products of Two Equidimensional Spheres\nby Özgün Ünlü (Bilkent University) as part of Yeditepe Mathematics
Seminars\n\n\nAbstract\nWe will first review some known restrictions on fi
nite groups\nthat can act freely on products of two equidimensional sphere
s. Then we\nwill discuss some constructions of free actions of finite p-g
roups on\nproducts of two equidimensional spheres. Finally\, we will discu
ss some\nopen problems about free p-group actions on two equidimensional s
pheres.\n
LOCATION:https://researchseminars.org/talk/7tepemathseminars/5/
END:VEVENT
BEGIN:VEVENT
SUMMARY:Turgut Önder (Middle East Techinal University)
DTSTART;VALUE=DATE-TIME:20201204T140000Z
DTEND;VALUE=DATE-TIME:20201204T150000Z
DTSTAMP;VALUE=DATE-TIME:20210419T102149Z
UID:7tepemathseminars/6
DESCRIPTION:Title: Existence of Almost Complex Foliations on Spheres\nby Turgut
Önder (Middle East Techinal University) as part of Yeditepe Mathematics
Seminars\n\n\nAbstract\nIntuitively\, a foliation on a manifold correspond
s to a partition of the manifold into connected\, immersed submanifolds of
the same dimension\, called leaves which form locally layers of a Euclide
an space. An almost complex foliation is a foliation whose tangent bundle
admits a complex structure. The existence problem of foliations on closed
manifolds is reduced to the existence problem of plane fields in 1970’s
by W. Thurston which can be attacked by algebraic topological methods. How
ever\, not much has been written about the existence problem of almost com
plex foliations. On spheres\, İ. Dibağ’s results provide concrete nece
ssary conditions in terms of the dimension of the sphere and the dimension
of the foliation. In this talk\, after reviewing some basic notions about
the foliations\, we will present some results in the other direction\, i.
e. about the sufficient conditions for the existence of almost complex fol
iations on spheres.\n
LOCATION:https://researchseminars.org/talk/7tepemathseminars/6/
END:VEVENT
BEGIN:VEVENT
SUMMARY:Özgür Kişisel (Middle East Techinal University)
DTSTART;VALUE=DATE-TIME:20201211T140000Z
DTEND;VALUE=DATE-TIME:20201211T150000Z
DTSTAMP;VALUE=DATE-TIME:20210419T102149Z
UID:7tepemathseminars/7
DESCRIPTION:Title: On complex 4-nets\nby Özgür Kişisel (Middle East Techinal
University) as part of Yeditepe Mathematics Seminars\n\n\nAbstract\nNets
are certain special line arrangements in the plane and they occur in vario
us contexts related to algebraic geometry\, such as resonance varieties\,
homology of Milnor fibers and fundamental groups of curve complements. We
will investigate nets in the complex projective plane $\\mathbb{CP}^2$. Le
t $m\\geq 3$ and $d\\geq 2$ be integers. An $(m\,d)$-net is a pencil of de
gree $d$ algebraic curves in $\\mathbb{CP}^2$ with a base locus of exactly
$d^2$ points\, which degenerates into a union of $d$ lines $m$ times. It
was conjectured that the only $4$-net is a $(4\,3)$-net called the Hessian
arrangement. I will outline our proof together with A. Bassa of this conj
ecture.\n
LOCATION:https://researchseminars.org/talk/7tepemathseminars/7/
END:VEVENT
BEGIN:VEVENT
SUMMARY:Fatih Erman (İzmir İnstitute of Technology)
DTSTART;VALUE=DATE-TIME:20201218T100000Z
DTEND;VALUE=DATE-TIME:20201218T110000Z
DTSTAMP;VALUE=DATE-TIME:20210419T102149Z
UID:7tepemathseminars/8
DESCRIPTION:Title: On the Existence of a Self-Adjoint Hamiltonian for a Singular In
teraction on Manifolds\nby Fatih Erman (İzmir İnstitute of Technolog
y) as part of Yeditepe Mathematics Seminars\n\n\nAbstract\nAccording to th
e postulates of Quantum Mechanics\, the dynamics of quantum systems are ge
nerated by a self-adjoint operator\, namely Hamiltonian operator associate
d with the energy of the system. Dirac delta potentials are known as one c
lass of singular interactions\, which have many applications in various ar
eas of physics. There are different mathematically rigorous approaches for
the description of such systems by some self-adjoint Hamiltonian operator
in $L^2(\\mathbb{R}^n)$. In this talk\, I would like to introduce the sub
ject in a rather elementary way and briefly discuss such interactions in o
ne dimension heuristically and from the Von Neumann's self-adjoint extensi
on point of view. Then\, I shall extend the same model onto the two and th
ree dimensional Cartan-Hadamard manifolds with Ricci curvature bounded bel
ow by describing the system in terms of "limit" of resolvent of the regula
rized version of the initial singular Hamiltonian. This will be accomplish
ed by the heat kernel defined on manifolds and its Li-Yau type of estimate
s.\n
LOCATION:https://researchseminars.org/talk/7tepemathseminars/8/
END:VEVENT
BEGIN:VEVENT
SUMMARY:Noyan Er (Dokuz Eylül University)
DTSTART;VALUE=DATE-TIME:20201225T100000Z
DTEND;VALUE=DATE-TIME:20201225T110000Z
DTSTAMP;VALUE=DATE-TIME:20210419T102149Z
UID:7tepemathseminars/9
DESCRIPTION:Title: Pure Things\nby Noyan Er (Dokuz Eylül University) as part o
f Yeditepe Mathematics Seminars\n\n\nAbstract\nThis will be a down-to-eart
h that talk aims to spark interest\, especially among young researchers\,
in a notion at the crossroads of several fields of algebra\, including rep
resentation theory of algebras\, abelian group theory and ring theory\, na
mely purity. However\, whatever the path it may have followed historically
\, we will derive our motivation from a subject accessible to pretty much
every one with a basic understanding of linear algebra: systems of linear
equations.\n
LOCATION:https://researchseminars.org/talk/7tepemathseminars/9/
END:VEVENT
BEGIN:VEVENT
SUMMARY:Serdar Ay (Bilkent University)
DTSTART;VALUE=DATE-TIME:20200508T100000Z
DTEND;VALUE=DATE-TIME:20200508T110000Z
DTSTAMP;VALUE=DATE-TIME:20210419T102149Z
UID:7tepemathseminars/12
DESCRIPTION:Title: Dilations of positive semidefinite kernels valued in operators
of barrelled VH-spaces\nby Serdar Ay (Bilkent University) as part of Y
editepe Mathematics Seminars\n\nAbstract: TBA\n
LOCATION:https://researchseminars.org/talk/7tepemathseminars/12/
END:VEVENT
BEGIN:VEVENT
SUMMARY:Mehmet Akif Erdal (Yeditepe University)
DTSTART;VALUE=DATE-TIME:20200306T100000Z
DTEND;VALUE=DATE-TIME:20200306T110000Z
DTSTAMP;VALUE=DATE-TIME:20210419T102149Z
UID:7tepemathseminars/13
DESCRIPTION:Title: Brown Fibration Categories and Enrichments in Monoidal Model Ca
tegories\nby Mehmet Akif Erdal (Yeditepe University) as part of Yedite
pe Mathematics Seminars\n\nAbstract: TBA\n
LOCATION:https://researchseminars.org/talk/7tepemathseminars/13/
END:VEVENT
BEGIN:VEVENT
SUMMARY:Tuna Bayraktar (Yeditepe University)
DTSTART;VALUE=DATE-TIME:20200417T100000Z
DTEND;VALUE=DATE-TIME:20200417T110000Z
DTSTAMP;VALUE=DATE-TIME:20210419T102149Z
UID:7tepemathseminars/14
DESCRIPTION:Title: Minimal surfaces and smooth autonomous dynamical systems in 2D<
/a>\nby Tuna Bayraktar (Yeditepe University) as part of Yeditepe Mathemati
cs Seminars\n\nAbstract: TBA\n
LOCATION:https://researchseminars.org/talk/7tepemathseminars/14/
END:VEVENT
BEGIN:VEVENT
SUMMARY:Alexander Degtyarev (Bilkent University)
DTSTART;VALUE=DATE-TIME:20210507T100000Z
DTEND;VALUE=DATE-TIME:20210507T110000Z
DTSTAMP;VALUE=DATE-TIME:20210419T102149Z
UID:7tepemathseminars/16
DESCRIPTION:by Alexander Degtyarev (Bilkent University) as part of Yeditep
e Mathematics Seminars\n\nAbstract: TBA\n
LOCATION:https://researchseminars.org/talk/7tepemathseminars/16/
END:VEVENT
BEGIN:VEVENT
SUMMARY:Selçuk Demir (Dokuz Eylül University)
DTSTART;VALUE=DATE-TIME:20210521T130000Z
DTEND;VALUE=DATE-TIME:20210521T140000Z
DTSTAMP;VALUE=DATE-TIME:20210419T102149Z
UID:7tepemathseminars/17
DESCRIPTION:by Selçuk Demir (Dokuz Eylül University) as part of Yeditepe
Mathematics Seminars\n\nAbstract: TBA\n
LOCATION:https://researchseminars.org/talk/7tepemathseminars/17/
END:VEVENT
BEGIN:VEVENT
SUMMARY:Semra Pamuk (Middle East Technical University)
DTSTART;VALUE=DATE-TIME:20210312T130000Z
DTEND;VALUE=DATE-TIME:20210312T140000Z
DTSTAMP;VALUE=DATE-TIME:20210419T102149Z
UID:7tepemathseminars/18
DESCRIPTION:Title: Rank conditions for finite group actions on $4$-manifolds\n
by Semra Pamuk (Middle East Technical University) as part of Yeditepe Math
ematics Seminars\n\n\nAbstract\nIn this talk\, I will give some old and ne
w information about the existence of finite group actions on closed\, conn
ected\, orientable $4$-manifolds. In this dimension\, the comparison betwe
en smooth and topological group actions are interesting but our focus will
be on locally linear topological actions. In particular\, we will talk ab
out the following question: Given a closed orientable $4$-manifold $M$\, w
hat is the maximum value of $\\mathrm{rk}(G)$ over all the finite groups $
G$ which act effectively\, locally linearly\, and homologically trivially
on $M$? This is a joint work with Ian Hambleton.\n
LOCATION:https://researchseminars.org/talk/7tepemathseminars/18/
END:VEVENT
BEGIN:VEVENT
SUMMARY:Fatma Altunbulak Aksu (Mimar Sinan Fine Arts University)
DTSTART;VALUE=DATE-TIME:20210604T130000Z
DTEND;VALUE=DATE-TIME:20210604T140000Z
DTSTAMP;VALUE=DATE-TIME:20210419T102149Z
UID:7tepemathseminars/19
DESCRIPTION:by Fatma Altunbulak Aksu (Mimar Sinan Fine Arts University) as
part of Yeditepe Mathematics Seminars\n\nAbstract: TBA\n
LOCATION:https://researchseminars.org/talk/7tepemathseminars/19/
END:VEVENT
BEGIN:VEVENT
SUMMARY:Engin Büyükaşık (İzmir Institute of Technology)
DTSTART;VALUE=DATE-TIME:20210528T130000Z
DTEND;VALUE=DATE-TIME:20210528T140000Z
DTSTAMP;VALUE=DATE-TIME:20210419T102149Z
UID:7tepemathseminars/20
DESCRIPTION:by Engin Büyükaşık (İzmir Institute of Technology) as par
t of Yeditepe Mathematics Seminars\n\nAbstract: TBA\n
LOCATION:https://researchseminars.org/talk/7tepemathseminars/20/
END:VEVENT
BEGIN:VEVENT
SUMMARY:Alp Bassa (Boğaziçi University)
DTSTART;VALUE=DATE-TIME:20210409T130000Z
DTEND;VALUE=DATE-TIME:20210409T140000Z
DTSTAMP;VALUE=DATE-TIME:20210419T102149Z
UID:7tepemathseminars/21
DESCRIPTION:Title: Rational points on curves over finite fields and their asymptot
ic\nby Alp Bassa (Boğaziçi University) as part of Yeditepe Mathemati
cs Seminars\n\n\nAbstract\nCurves over finite fields with many rational po
ints have been of interest for both theoretical reasons and for applicatio
ns. To obtain such curves with large genus various methods have been emplo
yed in the past. One such method is by means of explicit recursive equatio
ns and will be the emphasis of this talk. The recursive nature of these to
wers makes them very special and in fact all good examples have been shown
to have a modular interpretation of some sort. In this talk I will try to
give an overview of the landscape of explicit recursive towers and their
modularity.\n
LOCATION:https://researchseminars.org/talk/7tepemathseminars/21/
END:VEVENT
BEGIN:VEVENT
SUMMARY:Müge Kanuni Er (Düzce University)
DTSTART;VALUE=DATE-TIME:20210416T100000Z
DTEND;VALUE=DATE-TIME:20210416T110000Z
DTSTAMP;VALUE=DATE-TIME:20210419T102149Z
UID:7tepemathseminars/22
DESCRIPTION:Title: Socle of Incidence Rings\nby Müge Kanuni Er (Düzce Univer
sity) as part of Yeditepe Mathematics Seminars\n\n\nAbstract\nIn his semin
al paper of 1964\, "On the foundations of combinatorial theory I: Theory o
f Möbius Functions" Gian-Carlo Rota defined an incidence ring as a tool f
or solving combinatorial problems. Incidence ring is a specific ring of fu
nctions defined on the ordered pairs of a given partially ordered set to a
given ring. Möbius function is an element of an incidence ring\, besides
with the appropriate choice of the partially ordered set\, Möbius functi
on of this incidence algebra coincides with the well-known Möbius functio
n of number theory. A product of copies of a ring and upper triangular mat
rices are typical examples of incidence algebras. \n\nThe investigation of
a ring is usually enriched by understanding specialtypes of ideals of it\
, such as the Jacobson radical\, the prime radical\, the socle\,the singul
ar ideal\, the center\, etc. Although incidence rings have been an object
of study for a few decades\, there does not seem to be any results in the
literature on the socle of incidence rings.\n\nIn this talk\, we will be r
estricting the left socle of an incidence ring between two sets.More expli
citly\, we compute the socle of an incidence ring I(X\,R) under some assu
mptions on the ring R and/or the partially ordered set X. \n\n(This joint
work with Özkay Özkan- https://doi.org/10.15672/hujms.684042 )\n
LOCATION:https://researchseminars.org/talk/7tepemathseminars/22/
END:VEVENT
BEGIN:VEVENT
SUMMARY:Benjamin Matschke (Boston University)
DTSTART;VALUE=DATE-TIME:20210319T150000Z
DTEND;VALUE=DATE-TIME:20210319T160000Z
DTSTAMP;VALUE=DATE-TIME:20210419T102149Z
UID:7tepemathseminars/23
DESCRIPTION:Title: Proofs by example\nby Benjamin Matschke (Boston University)
as part of Yeditepe Mathematics Seminars\n\n\nAbstract\nWe study the proo
f method "proof by example" in which a general statement can be proved by
verifying it for a single example. This strategy can indeed work if the st
atement in question is an algebraic identity and the example is "generic".
This talk addresses the problem of constructing a practical example\, whi
ch is sufficiently generic\, for which the statement can be verified effic
iently\, and which allows for a numerical margin of error.\n\nOur method i
s based on diophantine geometry\, in particular an arithmetic Bezout theor
em\, an arithmetic Nullstellensatz\, and a new effective Liouville-Lojasie
wicz type inequality for algebraic varieties. As an application we discuss
theorems from plane geometry and how to\nprove them by example.\n
LOCATION:https://researchseminars.org/talk/7tepemathseminars/23/
END:VEVENT
BEGIN:VEVENT
SUMMARY:Oğuz Şavk (Boğaziçi University)
DTSTART;VALUE=DATE-TIME:20210305T130000Z
DTEND;VALUE=DATE-TIME:20210305T140000Z
DTSTAMP;VALUE=DATE-TIME:20210419T102149Z
UID:7tepemathseminars/24
DESCRIPTION:Title: Classical and New Plumbings Bounding Contractible Manifolds and
Homology Balls\nby Oğuz Şavk (Boğaziçi University) as part of Yed
itepe Mathematics Seminars\n\n\nAbstract\nA central problem in low-dimensi
onal topology asks which\nhomology 3-spheres bound contractible 4-manifold
s and homology 4-balls.\nIn this talk\, we address this problem for plumbe
d 3-manifolds and we\npresent the classical and new results together. Our
approach is based on\nMazur’s famous argument which provides a unificati
on of all results in a\nfairly simple way.\n
LOCATION:https://researchseminars.org/talk/7tepemathseminars/24/
END:VEVENT
BEGIN:VEVENT
SUMMARY:Berrin Şentürk (Augsburg University)
DTSTART;VALUE=DATE-TIME:20210430T130000Z
DTEND;VALUE=DATE-TIME:20210430T140000Z
DTSTAMP;VALUE=DATE-TIME:20210419T102149Z
UID:7tepemathseminars/25
DESCRIPTION:Title: Free Group Actions on Product of 3 Spheres\nby Berrin Şent
ürk (Augsburg University) as part of Yeditepe Mathematics Seminars\n\n\nA
bstract\nA long-standing Rank Conjecture states that if an elementary abel
ian $p$-group acts freely on a product of spheres\, then the rank of the g
roup is at most the number of spheres in the product. We will discuss the
algebraic version of the Rank Conjecture given by Carlsson for a different
ial graded module $M$ over a polynomial ring. We will state a stronger con
jecture concerning varieties of square-zero upper triangular matrices corr
esponding to the differentials of certain modules. By the work on free fla
gs in $M$ introduced by Avramov\, Buchweitz\, and Iyengar\, we will obtain
some restriction on the rank of submodules of these matrices. By this arg
ument we will show that $(\\mathbb{Z}/2\\mathbb{Z})^4$ cannot act freely o
n product of $3$ spheres of any dimensions.\n
LOCATION:https://researchseminars.org/talk/7tepemathseminars/25/
END:VEVENT
BEGIN:VEVENT
SUMMARY:Uğur Yiğit (İstanbul Medeniyet University)
DTSTART;VALUE=DATE-TIME:20210402T130000Z
DTEND;VALUE=DATE-TIME:20210402T140000Z
DTSTAMP;VALUE=DATE-TIME:20210419T102149Z
UID:7tepemathseminars/26
DESCRIPTION:Title: $C_2$-Equivariant EHP Sequences\nby Uğur Yiğit (İstanbul
Medeniyet University) as part of Yeditepe Mathematics Seminars\n\n\nAbstr
act\nTo determine the homotopy groups $\\pi_n(S^k)$ of spheres is a centra
l problem in homotopy\ntheory. One of the main tools for calculations in t
he classical unstable homotopy theory is\nthe EHP sequence. In this talk\,
we give the generalizations of the EHP sequence in the classical homotopy
theory to the $C_2$-equivariant case.\n
LOCATION:https://researchseminars.org/talk/7tepemathseminars/26/
END:VEVENT
END:VCALENDAR